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Abstract

In many real-life scenarios, decision-makers do not exclusively

care for materialized outcomes from decisions they and their co-

players make but also display other-regarding preferences such as

reciprocity and surprise. Psychological game theory is able to model

such belief-dependent motivations. In this paper we discuss the rea-

soning concepts of common belief in rationality and common belief in

future rationality in a psychological game-theoretic setting and use

them to provide an explanation for the puzzle of the Surprise Exam

Paradox. We consider two versions of the surprise exam game, both

in a static and dynamic scenario. In the version that best captures

the actual crux of the paradox, we show that, as long as no cautious

reasoning is imposed, full surprise is always possible. This contrasts

the previous game-theoretic literature on the Surprise Exam Paradox,

which relied on equilibrium concepts for traditional and psychologi-

cal games alike and showed that at most partial surprise is possible

under these concepts.
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1 Introduction

Traditional concepts in game theory assume decision-makers only care about outcomes that result
from decisions made by themselves and others. Many real-life decisions do not exclusively depend
on such materialized outcomes however. In interactions between individuals, decision-makers often
display motivations that are fuelled by altruism, feelings of reciprocity or further other-regarding
preferences. Many of such psychological payoffs rely on what others expect the decision-maker to
think and do. Traditional game theory is inapt to truly capture such motivations: it assumes that
decision-makers solely care for the decisions of others when deciding upon their optimal course of
action.

The field of psychological game theory is a response to these considerations and studies the
interaction of individuals with belief-dependent motivations. It has allowed for modeling many
different intention-based emotions in the framework of game theory, such as reciprocity (Rabin,
1993; Dufwenberg and Kirchsteiger, 2004), anger (Battigalli et al., 2015) and aversion to perceived
cheating (Dufwenberg and Dufwenberg, 2016). In comparison, research on the theoretical founda-
tions of psychological games has been quite limited thus far. Whereas the theory of psychological
games has mostly been focusing on psychological Nash equilibrium (Geanakoplos et al., 1989) and
psychological sequential equilibrium (Battigalli and Dufwenberg, 2009), little is known about more
basic notions of iterative reasoning such as common belief in rationality (Brandenburger and Dekel,
1987; Tan and Werlang, 1988) and common belief in future rationality (Perea, 2014) in psycholog-
ical games. Though steps have been made already ( Battigalli and Dufwenberg, 2009; Bjorndahl
et al., 2016; Sanna, 2016; Jagau and Perea 2017), much still remains to be explored, especially in
dynamic settings.

A better understanding of the reasoning processes underlying psychological games could help in
shedding light on questions that the current theoretical literature has not yet been able to provide
a satisfactory answer to. An interesting case we will consider in this regard is The Surprise Exam
Paradox. Paradoxes have had a central role in studying human reasoning. They highlight flaws
or limits in the understanding of a whole range of different problems. Among those, the Surprise
Exam Paradox in particular is a puzzle that has garnered much interest, from multiple academic
fields. It could be described as follows:

A geography teacher announces to his student that during the next week he will be given an exam.
However, the teacher does not announce on which day of the week the exam will take place. That
is, he lets the student know that he wishes to surprise him. Reasoning by backward induction will
lead the student to believe that the teacher cannot give the exam on Friday. Namely, if Friday
has come about and the exam has not been given at that point, the student knows the exam has
to be given on Friday and therefore no surprise will be possible. Once Friday is ruled out by the
student, only Monday to Thursday are left as viable options for the teacher according to the stu-
dent. But then by the same reasoning the student cannot think the teacher can choose Thursday
any longer: once Thursday has arrived and the exam has not yet been given, the student knows that
the exam will be given on Thursday. Following the same line of reasoning, the student will believe
that the exam cannot be given on Wednesday, Tuesday or on Monday and thus will conclude that
the teacher cannot give the exam. Once Wednesday comes about, the student finds an exam lying
on his desk. He did not expect this, by the discussion above. It is a paradoxical outcome in his eyes.

Though a seemingly simple problem, the sheer size of the literature on the paradox shows its
value not only to game-theorists, but also to philosophers and logicians (see Chow (2011) for a
comprehensive overview of the literature on the topic). In particular, logicians have mainly focused
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on the nature of the teacher’s announcement (Shaw, 1958). That is, surprising the student can
be defined by the announcement that: (1) the exam will take place next week and (2) that the
exact day on which it will take place is not deducible in advance for the student by the preceding
statement. This announcement in itself is found to be self-contradictory (Smullyan, 1987). The
philosophical school of epistemology has tried to resolve this self-contradiction by formulating the
problem in such a manner that the student can accept the announcement of the teacher to be either
true or false. This is the approach of Quine (1953).1 He found that an exam can at least come as
a surprise to the student on Friday if the student does not accept the teacher’s announcement to
be true2More specifically, Quine (1953) showed that the student cannot be surprised if he knows
the announcement. This assumes some level of caution by the student about the announcement,
implying a role for cautious reasoning within the paradox. Even though it is realistic for the student
to doubt the announcement, it does not coherently explain how the student can justifiably believe
the announcement to be false. Moreover, it does not give insight into why in the end the teacher
is still able to surprise the student. These are issues neither the epistemic school nor the logicians
properly address. This all directly highlights the importance of studying how the teacher can
possibly believe to surprise the student within this debate, instead of just looking at the student’s
reasoning process. A more interactive framework is needed to analyse such a matter. Game theory
is able to provide this. In this regard, two questions are important to ask ourselves: how do we
model the Surprise Exam Paradox in the language of game theory and what solution concept(s) do
we use to analyse it?

Only recently have game-theorists tackled the puzzle, with the literature on the topic remaining
scarce. Sober (1998) models the Surprise Exam Paradox as an iterated matching-pennies game, in
which the student chooses what he anticipates. Using an equilibrium analysis, he finds that with
some positive probability the student can be surprised in a unique, mixed-strategy equilibrium.
Sober argues that because the teacher adopts a distribution of choices, the student cannot always
correctly guess what the teacher is going to do. Ferreira and Bonilla (2008) try to reconcile the
results found in Sober with pragmatic logic. They argue that many of the knowledge and reasoning
concepts introduced to the problem by logicians are not needed to understand the paradox in a
game-theoretic setting. They mostly confirm the findings of Sober. Also modeling beliefs as actions,
they find for multiple game forms that the teacher can indeed at best partially (with positive
probability less than one) surprise the student in a subgame perfect equilibrium, by adopting
a random distribution of choices. That is to say, there is only a mixed-strategy equilibrium in
each game form. From the teacher’s reasoning perspective, this implies that full surprise (surprise
with probability one) is not possible. However, from the paradox scenario described earlier, it is
clear that there exist events for the teacher to believe in, in which fully surprising the student is
possible. An additional matter of consideration with this traditional game-theoretic approach is
that a distinction is made between beliefs the student may hold and what the student may choose
to anticipate about what the teacher will choose. This allows for many conceivable scenarios in
which the student may believe one thing, but anticipates something different, whereas conceptually
beliefs and anticipations are the same. This inevitably leads one to seek for prudential reasons that
help in explaining the possibility of the student being willfully blind with respect to his own beliefs,
in order to choose to anticipate something else (Sober, 1998). However, such a discussion distracts
from the actual core of the paradox. The teacher is merely interested in surprising the student by
doing exactly the opposite of what he believes the student is thinking. Any motivations the student
may have in convincing himself what he chooses to anticipate are thus irrelevant for the teacher.

1Quine (1953), amongst others, technically looked at a different version of the paradox, called the Unexpected
Hanging Paradox. However, it represents exactly the same problem.

2.
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Geanakoplos (1996) takes a different perspective on the matter which circumvents the previous
issue. He uses psychological game theory to model the teacher’s utility as a function of his second-
order beliefs. This crucially includes the belief the teacher has about what the student believes the
teacher is going to choose. Employing the concept of psychological Nash equilibrium (Geanakoplos
et al., 1989), in one of two versions considered it is shown that under said concept, common
knowledge about the teacher’s belief-dependent motivations allow the student to completely predict
when the exam will happen. Though a manner is found in which the psychological game can be
transformed to allow for near full surprise under a psychological subgame perfect equilibrium, also
the analysis of Geanakoplos shows us that equilibrium concepts such as the (psychological) Nash
equilibrium do not provide us with all the right tools to predict full surprise and thus to, in a sense,
resolve the Surprise Exam Paradox. In a game-theoretic framework, a broader perspective is thus
warranted.

In light of the limited work on the epistemic foundations of psychological games, the Surprise
Exam Paradox presents itself as an interesting thought experiment. Being a game that fully revolves
around a teacher that wishes to surprise a student by giving an unexpected exam, it neatly captures
the idea of belief-dependent motivations. Moreover, it is part of a class of games that allows for
a straightforward transformation from static scenarios to dynamic scenarios. In both static and
dynamic scenarios we will consider two variants of the game in order to provide a complete picture
of the game-theoretic reasoning behind the supposed paradox. At the same time, the approach
from epistemic game theory can provide a fresh take on the much debated mechanisms behind the
paradox on itself as well. Namely, it is able to formalize how intuitions from logic about reasoning
and beliefs are inherently present in a game-theoretic discussion of the paradox.

The purpose of this paper is twofold. First, to gain a deeper understanding of the reasoning
processes of decision-makers in psychological games, we discuss and also expand upon the epistemics
of psychological game theory. We consider the concepts of common belief in rationality and common
belief in future rationality as basic modes of reasoning and introduce the notion of caution to the
setting of psychological games. Second, using the theoretical foundations discussed and introduced
in this paper, our goal is to add to the scarce game-theoretic literature that tries to resolve the
Surprise Exam Paradox. Overall, we wish to answer the following question in this paper: Can the
concepts of common belief in rationality and common belief in future rationality resolve the Surprise
Exam Paradox, and if so, how?

Common belief in rationality in psychological games is essentially the same as common belief
in rationality in traditional games, in the sense that at no point in his belief hierarchy a player’s
rationality is questioned (Battigalli and Dufwenberg, 2009; Bjorndahl et al., 2016; Sanna, 2016;
Jagau and Perea, 2017). There is an important difference to be found in the definition of optimality
however, as in psychological games now also belief-dependent motivations come into play. If we
extend the paradox game to the dynamic scenario, a comparable distinction is found for the concept
of common belief in future rationality, where at no point in a decision-makers belief conditional
hierarchy rationality pertaining to now and in the future is put into doubt.

We consider two versions of the surprise exam paradox to apply these concepts: one where
surprise by giving and not giving the exam is possible and one where only surprise from giving
the exam is possible. We find that in both cases, full surprise is possible under a belief hierarchy
that expresses common belief in rationality. A crucial element in the version where surprise is only
possible from giving the exam is that the student should deem it possible that the teacher cannot
simultaneously give the exam and surprise the student. We further elaborate on this by introducing
the notion of caution to psychological games, modeled by non-standard probabilities. We show that
if the student is a cautious reasoner, the teacher cannot hope to fully surprise the student in any
way. These findings translate to the dynamic scenario, when considering common belief in future
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rationality. Analyses using psychological Nash equilibrium contrast these results, as the imposed
correct beliefs assumption significantly limits the teacher’s opportunities to surprise the student.

The remainder of the paper is organized as follows. In Section 2 we formally define the con-
cept of a static psychological game. Moreover, the static reasoning concept of common belief in
rationality in psychological games will be discussed, as well as its link to the equilibrium concept
of psychological Nash equilibrium. This will all be applied in Section 3, where we analyse several
variants of the Surprise Exam Paradox in a static scenario. In Section 4, cautious reasoning in
psychological games will be introduced and applied to the paradox. In Section 5 we extend the
Surprise Exam Paradox to a dynamic scenario, and discuss the backward induction reasoning con-
cept of common belief in future rationality and its link to psychological subgame perfection. This
framework is then applied to two versions of the Surprise Exam Paradox in a dynamic scenario.
Finally, we conclude with some closing remarks in Section 6.

2 Preliminaries

We start this section by giving a formal definition of a psychological game. Subsequently, common
belief in rationality in psychological games and psychological Nash equilibrium are discussed. The
discussion will be general and applies to any static psychological game.

2.1 Static psychological games

Psychological games have been developed to model decision-problems where the utility of a player
is allowed to explicitly depend on his higher-order beliefs. We will first concentrate on psychological
games in a static scenario. Following Jagau and Perea (2017), we can formally define such a static
psychological game as follows.

Definition 2.1. A static psychological game is a tuple

G = (Ci, Bi, ui)i∈I

with I denoting the finite set of players, Ci representing the finite set of choices for player i 3, Bi
the set of belief hierarchies for player i that express coherency and common belief in coherency, and

ui : Ci ×Bi → R

representing player i’s utility function.

A belief hierarchy bi ∈ Bi for a player i consists of a belief about the opponent’s set of choices, a
belief about the opponents’ choices and the opponents’ beliefs about their opponents’ choices, and
so on. Hence, a belief hierarchy is a chain of beliefs, where each component of the chain represents
a certain order of belief. For instance, b1i represents the first-order belief about the opponents’
choices and b2i represents the second-order belief about the opponents’ choices combined with the
opponents’ beliefs about their opponents’ choices. Note that in a psychological game, the utility
of a player may depend on any order of belief. In the Surprise Exam game we are considering in
this paper, the utility function depends on the second-order belief b2i specifically. Although utility
functions in psychological games can depend on any higher-order belief, second-order beliefs will
therefore be the key focus of this paper. In addition to this, the condition of coherency ensures that

3Ci may well be a singleton set, indicating a situation where player i does not have any choices to make but where
his beliefs matter for the utilities of other players.
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any k-th order belief does not contradict the (k − 1)-th order of belief (Brandenburger and Dekel,
1993). Though not a direction taken here, Sanna (2016) shows one may also abstain from imposing
the assumption of coherency and common belief in coherency a priori on the belief hierarchies when
defining a psychological game.

Formally speaking, a psychological game is a generalisation of a traditional game, since the
utility function in a traditional game exclusively depends on first-order beliefs. Moreover, utilities in
a traditional game always depend linearly on (first-order) beliefs. This is not true for psychological
games in general, where utilities may depend non-linearly on the full belief hierarchy.

As belief hierarchies involve infinite chains, writing them down explicitly can be a very cum-
bersome endeavor. Fortunately, there are methods for modeling such infinite chains of beliefs
conveniently. The method employed here entails capturing infinite belief hierarchies in an epis-
temic model. Such an epistemic model relies on assigning types to players, a concept first put
forward by Harsanyi (1967-1968). Every type ti ∈ Ti holds a belief about the opponents’ choice-
type combinations. As such, one can derive an infinite chain of beliefs for every type.

Definition 2.2 (Epistemic model in a static psychological game).
Consider a psychological game G. An epistemic model M = (Ti, bi)i∈I for G specifies for every
player i a finite set Ti of possible types. Moreover, for every player i and every type ti ∈ Ti the
epistemic model specifies a probability distribution bi(ti) over the the set of opponents’ choice-type
combinations C−i × T−i. The probability distribution bi(ti) represents the belief player i has about
the choice-type combinations of his opponents.

The coherency and common belief in coherency assumption assures here that any belief hierarchy
can in fact be represented by a type in an epistemic model. By means of an epistemic model as
defined above we can furthermore write the utility function as ui(ci, βi(ti)), where βi(ti) represents
the entire belief hierarchy that is generated by type ti. Finally, whenever ti and t′i induce the same
belief hierarchy, we should have ui(ci, βi(ti)) = ui(ci, βi(t

′
i)).

2.2 Common belief in rationality

In order to analyse basic reasoning in a static psychological game like the static Surprise Exam
Paradox, we will first look at the concept of common belief in rationality in psychological games, as
defined in Jagau and Perea (2017). It should be mentioned here that Bjorndahl et al. (2016) define
rationalizability in language-based games, which is an even larger class of games, in a similar vein.
Moreover, the static version of the common strong belief in rationality concept of Battigalli and
Dufwenberg (2009) is equivalent to common belief in rationality in psychological games as well.

The concept of common belief in rationality in psychological games is similar to that of tradi-
tional games. Also in psychological games, common belief in rationality entails that every player
i believes in his opponents’ rationality, believes that his opponents believe in their opponents’ ra-
tionality, and so on and so forth. A crucial difference, however, can be found in defining optimal
choices.

Definition 2.3 (Optimal choice in a static psychological game).
Consider an epistemic model M = (Ti, bi)i∈I and a type ti for player i in such a model. A choice
ci is optimal for type ti of player i if ∀c′i ∈ Ci : ui(ci, βi(ti)) ≥ ui(c′i, βi(ti)).

So optimality of a particular choice in a psychological game is defined as that choice being
optimal given a belief hierarchy instead of just the first-order belief. Building on this notion, the
concept of common belief in rationality remains similar to that of common belief in rationality
in traditional games (Bernheim, 1984; Pearce, 1984; Brandenburger and Dekel, 1987; Tan and
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Werlang, 1988). That is, we can first define what it means for a type to believe in an opponent’s
rationality.

Definition 2.4 (Belief in the opponents’ rationality).
Consider an epistemic model M = (Ti, bi)i∈I with a type ti ∈ Ti for player i within that epistemic
model. Type ti of player i believes in the opponents’ rationality if type ti only assigns positive
probability to opponents’ choice-type combinations (cj , tj) ∈ Cj × Tj where the choice cj is optimal
for the type tj, for every j 6= i.

Analogously to Tan and Werlang (1992), we can subsequently iterate this argument in order to
define what common belief in rationality in a psychological game entails.

Definition 2.5 (Common belief in rationality).
Consider an epistemic model M = (Ti, bi)i∈I . For every player i, and every type ti ∈ Ti, we say
that type ti expresses 1-fold belief in rationality if ti believes in the opponent’s rationality.
For every k > 1, every player i, and every type ti ∈ Ti, we say that type ti expresses k-fold belief in
rationality if ti only assigns positive probability to opponents’ types that express (k-1)-fold belief in
rationality.
Type ti expresses common belief in rationality if it expresses k-fold belief in rationality for every
k.

Finally, we can define a choice that can be rationally made under common belief in rationality
as follows. 4

Definition 2.6 (Rational choice under common belief in rationality).
We say that choice ci can be rationally made by player i under common belief in rationality if there
is an epistemic model M = (Ti, bi)i∈I and a type ti ∈ Ti such that ti expresses common belief in
rationality, and ci is optimal for ti.

2.3 Psychological Nash Equilibrium

Previous research on belief-dependent motivations in game-theoretic settings often revolved around
the idea of a psychological Nash equilibrium (Geanakoplos et al., 1989). This concept provides
a generalisation of the traditional solution concept of a Nash equilibrium, suitable for analysing
psychological games. A Nash equilibrium can be defined as a tuple of first-order beliefs about every
player’s choices such that they only assign positive probability to choices that are optimal, given
the first-order beliefs about the choices of the other players. A psychological Nash equilibrium,
on the other hand, corresponds to a full belief hierarchy. In line with the notion of a traditional
Nash equilibrium, a psychological Nash equilibrium too requires every player to believe that the
view of reality is commonly held by all players in the psychological game. That is, if a player i
has a certain belief about the choice of opponent j, then i must believe that every other opponent
shares that belief. Additionally, if player i has a certain belief about player j’s choice, then player
i believes that each opponent must believe that player i in fact has this belief. As such, also in a
psychological Nash equilibrium, the equilibrium is fully characterized by a player’s first-order and
second-order beliefs.

These ideas are conceptualized by the notion of a simple belief hierarchy, in line with Perea
(2012). Such a simple belief hierarchy is generated by a combination of probabilistic beliefs σ =
(σi)i∈I that are independent of each other, where σi ∈ ∆(Ci) for all i ∈ I. For every player i, σi

4Sanna (2016) and Jagau and Perea (2017) provide algorithms that characterize the choices that can be made
under common belief in rationality in static psychological games.
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thus is a probability measure over player i’s choice set. The simple belief hierarchy βi(σ) that is
generated by the combination of beliefs σ states that (i) player i has first-order belief σ−i about
his opponents’ choices, where σ−i =

∏
j 6=i σj . In addition, it states that (ii) player i believes that

every opponent opponent j has belief σ−j about his opponents’ choices, (iii) that player i believes
that every opponent j believes that every other player player k 6= j holds belief σ−k about his
opponents’ choices, (iv) et cetera.

We are now in a position to define a psychological Nash equilibrium.

Definition 2.7 (Psychological Nash equilibrium).
The combination of first-order beliefs (σi)i∈I constitutes a psychological Nash equilibrium if

∀i ∈ I : σi(ci) > 0⇒ ∀c′i ∈ Ci : ui(ci, βi(σ)) ≥ ui(c′i, βi(σ)).

The manner in which we formulate a psychological Nash equilibrium here diverges somewhat
from the one in Geanakoplos et al. (1989). Usually, one would denote by the set σ the vector of
mixed profiles, where σi represents the (randomized) choice for player i. We are however interested
in the individual reasoning processes of players and thus their beliefs. Finally, it should be pointed
out that a psychological Nash equilibrium has a natural link to the concept of common belief in
rationality, analogously to how a standard Nash equilibrium relates to common belief in rationality.
Namely, a simple belief hierarchy βi(σ) generated by a combination of beliefs σ expresses common
belief in rationality, if and only if, σ constitutes a psychological Nash equilibrium.

3 Surprise exam: static situation

With these tools at hand, let us turn to the central game in this paper: the surprise exam. As
reviewed earlier, the Surprise Exam Paradox has been considered many times in the past, in many
different shapes and forms. We too shall consider two different forms of the game in order to
point out that, irrespective of the scenario at hand, the Surprise Exam Paradox might not be as
paradoxical as its name may suggest.

Let us first consider the static scenario of the paradox. A teacher announces on a Friday to
his student that next week on either Thursday or Friday he intends to give the student an exam.
However, he will not announce the exact day to the student. Namely, the goal of the teacher is to
surprise the student. The student himself takes a passive role in the game, yet his beliefs matter
for the utility of the teacher.

3.1 Surprise by giving or not giving exam

A first form of the game could consider that not only giving the exam on Thursday can come as
a surprise to the student and thus give the teacher some utility, but also not giving the exam on
Thursday can cause a type of surprise that matters for the teacher’s utility. The corresponding
game is portrayed in matrix form in Table 1 where 0 < η ≤ 1. In this table (and in the tables
to come), the rows correspond to the teacher’s possible choices, whereas the columns capture the
teacher’s extreme second-order expectations. The extreme second-order expectations are enough to
represent the teacher’s utility in matrix form. Namely, the teacher does not care for all information
conveyed in his second-order beliefs. To surprise the student, only the expectation about what
the student believes the teacher to choose is relevant for the teacher’s utility. We can furthermore
assume that utility depends linearly on said second-order expectations. As such, the extremes of
the distribution of the teacher’s expectations are sufficient to represent the teacher’s utility in Table
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Table 1: Surprise by giving or not giving exam

Beliefs Student

Thursday Friday

Teacher
Thursday 0 1

Friday η 0

1. This class of games is what Jagau and Perea (2017) refer to as a belief-linear expectation-based
games.

If the teacher chooses to give the exam on Thursday and the student expects him to do so, the
teacher receives 0 utility. However, if the student would believe the teacher will give the exam on
Friday, the teacher receives utility of 1. If the teacher chooses Friday and the student believes the
teacher will give the exam on Thursday, the teacher gets η. This η corresponds to a small surprise:
the teacher still receives the highest amount of utility if he surprises the student by giving the exam
on Thursday. If the student believes, on the other hand, that the teacher will give the exam on
Friday, the teacher gets 0 utility. This is akin to the type of surprise game Geanakoplos (1996)
considers.

The main question is whether there is a belief hierarchy for the teacher that satisfies common
belief in rationality and such that he can rationally choose to give the exam on Thursday or Friday
and (partially) surprise the student. The epistemic model in Table 2, with its corresponding beliefs
diagram in Figure 1, provides an answer to this. In this epistemic model, we see that the teacher
has a type t1 and a type t′1, each deeming one type of the student possible. Type t2 of the student
holds the belief that the teacher is of type t′1 and chooses Friday and type t′2 thinks the teacher is
of type t1 and chooses Thursday. To show that a type of the teacher expresses common belief in
rationality it is sufficient to show that every type in the model expresses 1-fold belief in rationality.

Let us start at type t2 of the student. Type t2 of the student holds the belief that the teacher
is of type t′1 and will give the exam on Friday. This is a reasonable belief to hold for type t2, in
the sense that it expresses 1-fold belief in the opponent’s rationality: type t′1 namely believes the
student believes the teacher will choose to give the exam on Thursday. If that is the case, then it is
indeed optimal for the teacher, given he has beliefs induced by type t′1, to give the exam on Friday,
as η > 0. Type t′2 too believes in the teacher’s rationality: t′2 believes the teacher is of type t1
and gives the exam on Thursday. Type t1 of the teacher the student believes that the teacher will
give the exam on Friday. Indeed, then it is optimal for the teacher to give the exam on Thursday
(1 > 0) and hence type t′2 also believes in the opponent’s rationality.

Types t1 and t′1 by definition believe in the opponent’s rationality, as the student does not have

Table 2: Epistemic model for ”Surprise by giving or not giving exam”

T1 = {t1, t′1}
Types T2 = {t2, t′2}

Beliefs for Teacher
b1(t1) = t2
b1(t

′
1) = t′2

Beliefs for Student
b2(t2) = (Fr, t′1)
b2(t

′
2) = (Th, t1)
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Teacher

Thursday, t1

Friday, t′1

Student

t2

t′2

Teacher

Thursday, t1

Friday, t′1

Figure 1: Beliefs diagram for ”Surprise by giving or not giving exam”

any choices to make. Since every type in the model expresses 1-fold belief in rationality, it follows
that every type in fact expresses common belief in rationality. Since type t1 believes the student
believes the teacher will give the exam on Friday, the teacher, given he is of type t1, can rationally
choose to give the exam on Thursday yet still fully surprise the student (i.e. getting a utility 1).
Moreover, this belief is part of a belief hierarchy that is reasonable in the sense that it expresses
common belief in rationality. Type t′1 too expresses common belief in rationality, yet only allows
the teacher to catch the student off guard with a surprise worth η by choosing Friday, which gives
a utility less or equal to what a full surprise on Thursday would give. So giving the exam on
Thursday or on Friday can both reasonably come as a (full) surprise to the student.

This result differs significantly from the findings in Geanakoplos (1996), where the concept of a
psychological Nash equilibrium is applied to the game in Table 1. In fact, this game has, for a given
η, a unique psychological Nash equilibrium given by the belief σ1 where σ1(Th) = 1

η+1 . The proof is

elementary, and is left to the reader. In this equilibrium, the teacher will get u1(Th, β1(σ1)) = η
η+1

from choosing Thursday. From choosing Friday, the teacher will also get u1(Fr, β1(σ1)) = η
η+1 .

Believing to surprise the student with probability 1
η+1 by choosing Friday or with probability η

η+1
by choosing Thursday is the best the teacher can hope for. Since neither of these probabilities will
ever be equal to 1, a psychological Nash equilibrium will never allow for a full surprise. This is in
stark contrast to what we found under the concept of common belief in rationality, where we found
a belief hierarchy that supports a choice leading to full surprise.

The reason for this discrepancy lies in what it means for the teacher or the student to have a
simple belief hierarchy. In the psychological Nash equilibrium of this psychological game we have
a combination of beliefs σ = (σ1, σ2) where σ1 is the belief about the teacher’s choice and σ2 is
the belief about the student’s choice (which is a singleton by definition of the psychological game
and thus can be ignored). Let us consider a belief hierarchy β1(σ1), generated by σ1. Then the
teacher must not only believe that the student has belief σ1 about his own choices, but, because
β1(σ1) is a simple belief hierarchy, the teacher must also believe that the student must believe he
indeed believes that the student has belief σ1 about the teacher’s choice. And so on, and so forth.
In other words, the teacher must believe the student holds correct beliefs throughout.

As a result, a simple belief hierarchy, by assuming correct beliefs, takes away much of the
power to surprise the student. In this version of the paradox there is only one psychological Nash
equilibrium to reason from for the teacher. There is however no particular argument why the
teacher should hold the sort of beliefs as prescribed by the psychological Nash equilibrium. Even
more so, depending on the value of η, the distribution of probabilities in the teacher’s belief might
be rather arbitrary. It would be rather unnatural to think that the student would be correct about
such arbitrary beliefs. The belief hierarchies under common belief in rationality do not suffer from
the same problem. The epistemic model we constructed is just one example of a set of belief
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Table 3: Only surprise possible by giving exam

Beliefs Student

Thursday Friday

Teacher
Thursday 0 1

Friday 0 0

hierarchies that express common belief in rationality under which the teacher can either fully or
partially surprise the student. More in particular, the psychological Nash equilibrium corresponds
to only one of those possible belief hierarchies.

3.2 Only surprise possible from giving the exam

A second version of the game we can consider is portrayed in Table 3. This situation is perhaps
closer to the actual crux of the paradox. Here the teacher can only surprise the student the moment
he gives the exam. As a result, once Friday has come about and the exam is still not given, the
student knows that the exam happens on that day, giving the teacher a utility of 0. It can be shown
that the only possible psychological Nash equilibrium here is when the teacher believes the student
thinks with probability one that the teacher will give the exam on Thursday. Hence, no surprise
would be possible at all. Namely, consider a scenario in which σ1(Th) 6= 1. This implies that the
teacher would think the student believes the teacher will choose Friday with positive probability.
It is then only optimal for the teacher to choose Thursday and surprise the student at least a little.
However, the student would anticipate this and consequently fully believe the teacher will choose
Thursday. Hence, we must have σ1(Th) = 1, a contradiction. The correct beliefs assumption here
implies that the student knows what the teacher is thinking and can thus predict the rational
choices that the teacher may consider. This defeats any purpose of surprise, which fully depends
on being able to do something that an opponent will not be able to predict.

It is of course paradoxical to announce to give a surprise exam, but not being able to surprise
the student. So let us resume with what epistemic game theory tells us about this problem: can
we find a type for the teacher that expresses common belief in rationality such that he can still
surprise the student? Indeed, there is a belief hierarchy that expresses common belief in rationality
and such that the teacher can give the exam on Thursday and fully surprise the student. Table
4 shows an epistemic model that includes a type that fits this requirement. In fact, it is identical
to the epistemic model in Table 2 (See also Figure 1). Like before, let us start at type t2 of the
student in the model, who believes that the teacher is of type t′1 and will give the exam on Friday.
Friday can only be optimal to choose as long as the teacher believes that the student expects the

Table 4: Epistemic model for ”Only surprise possible by giving exam”

T1 = {t1, t′1}
Types T2 = {t2, t′2}

Beliefs for Teacher
b1(t1) = t2
b1(t

′
1) = t′2

Beliefs for Student
b2(t2) = (Fr, t′1)
b2(t

′
2) = (Th, t1)

11



teacher to give the exam on Thursday. Type t′1 indeed believes that the student believes the teacher
will give the exam on Thursday. Hence type t2 believes in the opponent’s rationality. Type t′2 of
the student believes the teacher is of type t1 and will give the exam on Thursday. Whatever the
teacher believes, Thursday is always a rational choice as its minimum expected utility is equal to the
maximum utility of Friday, being 0. So type t′2 also believes in the opponent’s rationality. Types t1
and t′1 of the teacher always believe in the opponent’s rationality by construction, since they do not
have to assign probabilities to choices, but only to types. Hence, every type in the epistemic model
believes in the opponent’s rationality. Consequently, every type also expresses common belief in
rationality. Since type t1 of the teacher believes the student believes that the teacher will give the
exam on Friday, the teacher’s type t1 can fully surprise the student by choosing Thursday and still
express common belief in rationality.

Thus, there is a mode of thinking possible for the teacher such that he can believe he is able to
give the exam on Thursday and fully surprise the student in the process. In the scenario presented
in the introduction, the student makes a valid observation about the teacher’s potential reasoning
that on Friday he cannot possibly surprise the student. However, it would not logically follow
from this that the teacher therefore must believe the student believes the teacher will never give
the exam on Friday. Namely, we have given a formal set-up where such reasoning is not the case.
The idea that the student can reasonably doubt the validity of the teacher’s announcement is what
allows the teacher to believe to be able to vindicate his announcement in the first place. The belief
hierarchies described here in a game-theoretic setting manage to capture this idea.

It appears to be the case, however, that the teacher can only believe he can fully surprise the
student if he believes the student believes with certainty that the teacher will choose Friday and
thus forgo a possible surprise. To formally show this, we will introduce in Section 4 the notion of
caution in psychological games.

4 Cautious reasoning in the Surprise Exam Paradox

Much like in traditional game theory, it might be too much of a stretch to assume that players in the
game may completely disregard a choice cj from a choice-set Cj of the opponent in his beliefs. Even
though a player might be fairly certain about what his opponent is going to do, some doubt may
always remain about the other choices available to an opponent. In other words, the player may
consider a first choice infinitely more likely to be chosen than a second, but nevertheless consider
the second choice as well. Such reasoning is captured by the notion of caution.

In traditional games, several methods have been utilised to capture cautious beliefs. The first
is Selten’s (1975) trembling hand argument where a belief for player i about player j’s choice does
not consist of a single probability distribution, but a whole sequence (bni )n∈N. In this sequence,
every element of the sequence assigns positive probability to every possible choice for player j. As
a result, every belief in the sequence in cautious. It is however not an effective method to use when
trying to make exact statements about players’ preferences, as we can only use arguments that rely
on the long-run behaviour of such a sequence. In epistemic game theory the usage of lexicographic
belief systems is prominent. First introduced by Blume et al. (1991a, 1991b), this concept also
entails sequences of beliefs, though organized into finitely many different levels. However, as is
argued in Mourmans (2017), lexicographic beliefs contain insufficient information to consistently
capture preferences of cautious reasoners in psychological games if one relies on epistemic models..

We are thus in need of a method to capture cautious beliefs without having to rely on infinite
sequences, yet that does allow us to derive unambiguous preferences over choices. Fortunately,
there does exist a method that is able to combine both. The idea of non-standard analysis goes
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back to at least Robinson (1973) but was first introduced to game theory by Hammond (1994).
Its use is similar to the trembling-hand argument in the sense that they also assign very small
numbers to events that are highly unlikely to happen. However, instead of relying on infinite
sequences, non-standard analysis entails assigning an infinitesimal ε, which is a non-real, positive
number. Insights in the usefulness of non-standard analysis to game theory have been provided by
Hammond (1994), who showed equivalence results between probability systems from non-standard
analysis and lexicographic probability systems, and more recently by Halpern (2010), who amongst
other things showed that this equivalence only holds as long as the state-space is finite.

As both Hammond (1994) and Halpern (2010) define it, infinitesimals can be found on an
extended field of numbers R∗, also called the non-Archimedean field. This field contains the real
line R, but also hyperreal numbers that do not satisfy the so-called Archimedean property. The
Archimedean property entails that for each positive real number r ∈ R, there exists another real,
positive number s such that r > s.5 Consequently, a real number can never truly become infinitely
small. An infinitesimal, that is on the extended field R∗, however can. That is, we have an
infinitesimal ε ∈ R∗ if ε > 0 and ε < r for all r ∈ R with r > 0.

Though the field R∗ features numerous complexities (Halpern, 2010), there is a property of the
field that is important to highlight here: if we have r, s ∈ R∗, r, s > 0 such that s

r is an infinitesimal,
then we say s is infinitely smaller than r. The closest real number to s

r is thus 0. This closest
real number always exists, and is referred to as the standard part of s

r . In other words, it should
be case that if we have st(s/r) = 0, where st(s/r) denotes the standard part of s

r , then for all
a ∈ R and a > 0 we have a · s < r. This property is especially important when trying to capture
cautious beliefs in psychological games by non-standard probability distributions. It allows us to
quantitatively establish when one event is deemed infinitely more likely to occur than another.
More specifically to the setting of game-theory, we can now say that if a choice-type combination
is assigned an infinitely smaller probability compared to another choice-type combination, it is
deemed infinitely less likely to occur.

We can use these characterisations to adapt the notions of caution and primary belief in ra-
tionality (Perea, 2012), which is akin to Brandenburger (1992)’s concept of permissibility, to fit
with psychological games. In order to do so, we first need to formally define what a non-standard
probability distribution and an epistemic model based on such distributions entail.

Definition 4.1 (Non-standard probability distribution).
Consider a finite set X. A non-standard probability distribution p on X assigns probabilities
p(x) ∈ R∗, where p(x) ≥ 0, such that

∑
x∈X p(x) = 1. Then ∆∗(X) denotes the set of all non-

standard probability distributions over X.

The leap to an epistemic model with non-standard beliefs is now easy to make.

Definition 4.2 (Epistemic model with non-standard beliefs).
Consider a psychological game G. An epistemic model M = (Ti, bi)i∈I with non-standard
beliefs for G specifies for every player i a finite set Ti of possible types. Moreover, for every player
i and every type ti ∈ Ti the epistemic model specifies a non-standard probability distribution bi(ti)
on the set of opponents’ choice-type combinations C−i × T−i.

A cautious player does not rule out any choice for an opponent. One subtlety in defining
caution is however that a player may consider multiple types for the opponent is his belief. As

5More specifically, the argument goes that every ordered field F contains the set of natural numbers n ∈ N. The
Archimedean property entails that we can find for every real, positive number r ∈ R a natural number n ∈ N such
that r > 1

n
.
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such, caution should be defined for each type that is deemed possible. Given an epistemic model
M = (Ti, bi)i∈I with non-standard beliefs, a type tj of an opponent j is deemed possible by player
i if bi(ti)(cj , tj) > 0 for some cj ∈ Cj . In the same epistemic model, we say player i deems a choice-
type combination (cj , tj) possible for player j if bi(ti)(cj , tj) > 0. Note here that bi(ti)(cj , tj) > 0 is
also possible when its standard part is zero. In this case, (cj , tj) receives infinitesimal probability.

Caution is then defined as follows.

Definition 4.3 (Cautious type).
Consider an epistemic model M = (Ti, bi)i∈I with non-standard beliefs and a type ti for player i
within the model. Type ti is cautious if, whenever it deems possible an opponent’s type tj for
some player j, then for every cj ∈ Cj it deems the choice-type pair (cj , tj) possible.

The notion of optimality remains the same. The only difference is that the belief hierarchy
now contains non-standard beliefs instead of standard beliefs. However, we cannot maintain the
same concept of believing in the opponent’s rationality here. Requiring a type to be cautious and
to believe in an opponent’s rationality may be incompatible. Namely, believing in an opponent’s
rationality implies assigning positive probability only to opponent’s choices that are optimal for the
opponent, yet caution requires one to consider all the opponent’s choices, including the suboptimal
ones. We can however adapt a weaker form of believing in an opponent’s rationality. Very akin to
the concept of permissibility as developed by Brandenburger (1992) and Börgers (1994), we consider
the notion of primary belief in rationality (similar to Perea (2012)).

Definition 4.4 (Primary belief in an opponent’s rationality).
Consider an epistemic model M = (Ti, bi)i∈I with non-standard beliefs and a type ti for player i.
Type ti primarily believes in the opponent’s rationality if, bi(ti)(cj , tj) ∈ R+ only if cj is
optimal for tj.

By R+ we denote the set of all positive, real numbers and by R∗+ the set of all positive numbers
on the extended field of real number R∗. Note here that ε ∈ R∗+, but ε /∈ R+. Just like with
common belief in rationality, we can now iterate belief in caution.

Definition 4.5 (Common full belief in caution).
Consider an epistemic model M = (Ti, bi)i∈I with non-standard beliefs and a type ti for player i.
Type ti expresses 1-fold full belief in caution if it only deems possible opponents’ types that are
cautious.
For every k > 1, every player i, and every type ti ∈ Ti, we say that type ti expresses k-fold full belief
in caution if ti only deems possible opponents’ types that express (k− 1)-fold full belief in caution.
Type ti expresses common full belief in caution if ti expresses k-fold full belief in caution for
every k.

If we do a similar iteration process for primary belief in rationality, we get common full belief
in primary belief in rationality.

Definition 4.6 (Common full belief in primary belief in rationality).
Consider an epistemic model M = (Ti, bi)i∈I with non-standard beliefs and a type ti for player i.
Type ti expresses 1-fold full belief in primary belief in rationality if ti primarily believes in the
opponent’s rationality.
For every k > 1, every player i, and every type ti ∈ Ti, we say that type ti expresses k-fold full belief
in primary belief in rationality if ti only deems possible opponents’ types that express (k − 1)-fold
full belief in primary belief in rationality.
Type ti expresses common full belief in primary belief in rationality if ti expresses k-fold
full belief in primary belief in rationality for every k.
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Then, similarly to a rational choice under common belief in rationality, a rational choice under
common full belief in caution and primary belief in rationality entails that the choice is optimal
for a type ti that is cautious and expresses common full belief in caution and primary belief in
rationality.

Let us return to the game depicted in Table 3, where only surprise from giving the exam is
possible. It turns out that if the student is a cautious reasoner, there is little the teacher can do
to surprise the student if there is common full belief in caution and primary belief in rationality.
To formally see why, consider some epistemic model M = (Ti, bi)i∈I , with a cautious type t∗2 for
the student. Suppose the student with type t∗2, with some non-standard (real or non-real), positive
probability, believes that the teacher will choose Friday and with some non-standard, positive (real
or non-real) probability believes that the teacher will choose Thursday (an example can be found
in Table 5). Hence, b2(t

∗
2)(Fr) > 0 and b2(t

∗
2)(Th) > 0. Under such beliefs, the only optimal

choice for the teacher is Thursday. If the student primarily believes in the teacher’s rationality and
has a belief hierarchy that expresses common full belief in caution, then he must believe that it is
infinitely more likely that the exam is going to happen on Thursday than on Friday. Under common
full belief in caution and primary belief in rationality, it follows that the teacher can only rationally
give the exam on Thursday, while believing the student primarily believes that the teacher will in
fact give the exam on Thursday. Hence, (almost) no surprise is possible under cautious reasoning.
Table 5 illustrates this, where it may be verified that both t1 and t2 express common full belief in
caution and primary belief in rationality by the previous discussion.

In Section 3.2 we observed that the teacher thinks he can fully surprise the student if he believes
the student thinks the teacher will wait with giving the exam until Friday and thus forgoing the
possibility to surprise him. In other words, the believed reasonable doubt the student has in the
teacher being able to simultaneously giving the exam and surprising the student, is what allows the
teacher to do exactly that. However, this doubt that the teacher believes the student has about
him being able to surprise the student, only manages to resolve the paradox to the extent that
the student is not believed to be cautious. We have shown that the student must believe with
certainty that the teacher will give the exam on Friday if the teacher wants to fully surprise the
student. In essence this result is very much in the spirit of the findings by Quine (1953). However,
the game-theoretic setting allows us to formally capture how the student can justifiably believe the
teacher can rationally choose to forgo the possible utility from surprising the student by choosing
to give the exam on Friday. The notion of common belief in rationality formalizes how the teacher
can eventually vindicate his announcement of simultaneously giving an exam and surprising the
student. Moreover, the notion of common full belief in caution and primary belief in rationality
provides a condition under which the paradox cannot be resolved. This discussion does not argue
against the possibility of the teacher expecting the student to believe the teacher may consider
both Thursday and Friday. That is, it is well possible for the teacher to be able to rationally
choose either Thursday or Friday, if he is indifferent between the two. This however only occurs

Table 5: Epistemic model for ”Only surprise possible by giving exam” with cautious beliefs

T1 = {t1}
Types T2 = {t2}
Beliefs for Teacher b1(t

′
1) = t′2

Beliefs for Student b2(t
′
2) = (1− ε)(Th, t1) + ε(Fr, t1)
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if the teacher fully expects the student to believe the teacher will give the exam on Thursday. As
a consequence, common full belief in caution cannot be satisfied, as the student must be able to
fully believe in the teacher choosing Thursday. Hence, a possible plan of the teacher of making it
common knowledge that he is considering a distribution over both Thursday and Friday such that
the student must guess this distribution will not help him at all. Namely, if the student knows the
teacher is considering a distribution over his options, the student must primarily believe the teacher
will consider Thursday with almost probability one, giving the teacher no room for surprise.

How likely it is for a player in a (psychological) game to have cautious beliefs is a matter beyond
the scope of this paper, though an interesting avenue for future (experimental) research.

5 Dynamic Surprise Exam Paradox

In this section we will try to answer whether our findings from the static versions also translate to
earlier days once we consider dynamic psychological games in which the teacher announces to give
a surprise exam on a day possibly before Thursday. More particularly, we will consider the scenario
in which the teacher can give the exam on Wednesday, Thursday or Friday. If the teacher gives the
exam on Wednesday, the game ends. If he does not, the game continues to the second stage of the
game where the teacher has another chance to surprise the student on Thursday. In that regard, the
teacher’s beliefs about the student’s beliefs at each stage of the game may be relevant. Before we
analyse this setting, we will first need to establish what such a dynamic psychological game formally
entails and how rationality works in dynamic settings. We will consider these notions specifically
for the dynamic surprise exam game, to avoid a straying discussion on the many complexities that
extending a static psychological game can bring about.

5.1 Description of dynamic surprise exam paradox

In a dynamic psychological game the utilities also depend on belief-dependent motivations. In a
dynamic setting these beliefs are conditional beliefs. Namely, as the dynamic game progresses, a
player might find out that his opponents are employing strategies he first did not expect. The
conditioning takes place when a certain information set h ∈ H, where player i ∈ I makes a choice,
is reached in the game. For the set of players in the dynamic surprise exam paradox we have
I = {Teacher, Student}. Moreover, the information sets correspond to Wednesday (denoted by ∅)
and Thursday (denoted by h1). Note that in the three-day scenario there are only three possible
pure strategies for the teacher: W (Wednesday), (NW,Th) (not Wednesday but Thursday) and
(NW,Fr) (not Wednesday but Friday). We choose to henceforth abbreviate the latter two strategies
to Th and Fr respectively.

Like in the static form of the surprise exam game, we will look at two versions of the game, both
in which the teacher’s utility depends linearly on his conditional second-order expectations. The
first version is depicted in Figure 2. Here the teacher gets a utility of 1 if he surprises the student
by giving the exam, whereas the teacher receives a utility of 0 < η ≤ 1 at the end of the game for
each time that he creates a small surprise event for the student by not giving the exam. The cells
in Figure 2 illustrate every combination of a choice and an extreme second-order expectation that
are relevant for the teacher’s utility. In this scenario this means that, when the teacher decides
not to give the exam on Wednesday, the subsequent subgame consists of the teacher’s possible
strategies and vectors of extreme conditional second-order expectations. For instance, (W ;Th)
indicates that the teacher expects the student to believe at ∅ that the teacher will be giving the
exam on Wednesday and at h1, may the exam not be given on Wednesday, believes he will give the
exam on Thursday instead. In other words, the teacher’s utility at h1 not only depends on what
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Wednesday Not Wednesday

Wednesday 0 1

Not Wednesday

Beliefs Student

Teacher ∅

(W;Th) (W;Fr) (Th;Th) (Fr;Fr)

Thursday η η + 1 0 1

Friday 2η η η 0
Teacher h1

Figure 2: Dynamic situation with surprise possible by giving or not giving exam

he believes the student believes at h1, but also on what he believes the student believed at ∅. The
depicted utilities in Figure 2 can then be explained as follows: if the teacher gives the exam on
Wednesday while the student believed he would give the exam on a later day, then the teacher gets
a utility of 1. If the teacher decides to give the exam not on Wednesday, then the game moves on
to the subsequent subgame. However, in the process of moving to the next game, the teacher may
carry with him a utility of η. This occurs when the teacher expects at h1 that he has managed to
surprise the student at ∅ by not giving the exam while the student believed he would give one. As
a result, if the teacher manages to surprise the student at h1, the teacher could receive a utility up
to η + 1 in the end. However, if the teacher at h1 expects not to have surprised the student at ∅,
then we have at h1 essentially the same game as depicted in Table 1 in Section 3.1.

It should be mentioned here that according to our description of a dynamic psychological game
the extreme conditional second-order beliefs (Th;Fr) and (Fr;Th) should have been included in
Figure 2 as well. However, there is no particular reason for the student to update his beliefs at
h1 if he already expected the teacher not to give the exam on Wednesday. Because the student
is passive in the game, there is no student’s action observable for the teacher such that he may
reconsider what the student is thinking about him.6. As a result, the utilities for the teacher under
the second-order beliefs (Th;Fr) are identical to those under (Fr;Fr) and those under (Fr;Th)
are identical to those under (Th;Th)

Similarly, we can extend the psychological game in which only surprise is possible from giving
the exam from Section 3.2 to include Wednesday as well. The resulting game is depicted in Figure
3. In this psychological game, the teacher receives a utility of 1 if he manages to surprise the
student by giving the exam. Since on Friday the teacher knows the student knows the exam has to
be given if the exam has not been given by that time, choosing Friday as a strategy will regardless
of the conditional belief hierarchy result in a utility of 0.

Note that we have only defined a dynamic psychological game for the central game in this paper.
For a more general definition of dynamic psychological games, the reader is referred to Battigalli
and Dufwenberg (2009).

Also in a dynamic setting we can use types to capture belief hierarchies in the Surprise Exam
Paradox. These types form beliefs about the strategy-type combinations of their opponents. This is
done for both information sets ∅ and h1, resulting in an epistemic model for the three-day dynamic
surprise exam game.

Definition 5.1 (Dynamic epistemic model for the Surprise Exam Paradox).
Consider a dynamic surprise exam game D . A dynamic epistemic model M = (Ti, bi)i∈I
for D specifies for both the teacher and the student a finite set of possible types denoted by T1

6In other words, we assume Bayesian updating here.
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Wednesday Not Wednesday

Wednesday 0 1

Not Wednesday

Beliefs Student

Teacher ∅

(W;Th) (W;Fr) (Th;Th) (Fr;Fr)

Thursday 0 1 0 1

Friday 0 0 0 0
Teacher h1

Figure 3: Dynamic situation with surprise only possible by giving exam

and T2 respectively. For every type t1 ∈ T1 for the teacher, we specify at every information set
h ∈ H = {∅, h1} a probability distribution b1(t1, h) over the set of the student’s types T2. For every
type t2 ∈ T2, we specify at every information set h ∈ H with H = {∅, h1} a probability distribution
b2(t2, h) over the set of the teacher’s strategy-type combinations S1(h) × T1 where S1(h) is the set
of the teacher’s strategies that lead to h. Hence, S1(∅) = {W,Th, Fr} and S1(h1) = {Th, Fr}.

5.2 Common belief in future rationality

The Surprise Exam Paradox highlights the idea of, and potential problems of dealing with, back-
wards induction. When using backward induction, a player tries to reason at every stage of a
dynamic game about what an opponent can reasonably think and choose at the present and the
future and takes decisions and beliefs in the past for granted. Dekel et al. (1999) and Asheim
and Perea (2005) formally model backwards induction reasoning by the notion of sequential ra-
tionalizability. Baltag et al. (2009) as well Penta (2015) propose different concepts as to capture
backwards induction reasoning, which subtly differ in the restrictions the concepts impose, yet cap-
ture the same basic idea. We will however be looking at a direct dynamic counterpart of common
belief in rationality, introduced by Perea (2014), that also manages to capture reasoning processes
represented by backwards induction: common belief in future rationality.

Much like in traditional settings, common belief in future rationality in psychological games
entails that at any information set h ∈ H a player believes that his opponents are rational now and
in the future, believes that his opponents believe their opponents are rational now and in the future,
et cetera. Just like in the static scenario, also here one of the main divergences from traditional
game theory can be found in how we define an optimal strategy. Namely, the expected utility from
a strategy at a certain information set h ∈ H now no longer just depends on the conditional first-
order beliefs, but possibly on the entire conditional belief hierarchy. In the Surprise Exam Paradox
in particular, we denote the expected utility for the teacher at information set h ∈ {∅, h1} from a
certain strategy s1 ∈ S1(h) by u1(s1, β1(t1, h)), where β1(t1, h) is the conditional belief hierarchy
induced by type t1 at h. In the paradox the only element that is relevant for the teacher’s utility
from the conditional belief hierarchy β1(t1, h) is the second-order belief of the teacher. Using the
expected utilities, we can define an optimal strategy s1 ∈ {W,Th, Fr} at information set ∅ and an
optimal strategy s1 ∈ {Th, Fr} at information set h1 for the teacher.

Definition 5.2 (Optimal strategy at ∅ and h1).
Consider a dynamic epistemic model M = (Ti, bi)i∈I in the Surprise Exam Paradox and a type
t1 ∈ T1 in such a model. A strategy s1 ∈ {W,Th, Fr} is optimal for type t1 at information
set ∅ if ∀s′1 ∈ {W,Th, Fr} : u1(s1, β1(t1,∅)) ≥ u1(s′1, β1(t1,∅)).
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A strategy s1 ∈ {Th, Fr} is optimal for type t1 at information set h1 if ∀s′1 ∈ {Th, Fr} :
u1(s1, β1(t1, h1)) ≥ u1(s′1, β1(t1, h1)).

So, in case of the Surprise Exam Paradox, this e.g means that choosing Wednesday for the
teacher is only an optimal choice if the expected utility at ∅ derived from said choice given a
conditional belief hierarchy β1(t1,∅) is higher than what the teacher expects to get from choosing
either Thursday or Friday given the same belief hierarchy.

We are now in the position to adapt the idea of common belief in future rationality to fit with
the psychological game of the surprise exam. That is, we can define what it means for the student
to believe that the teacher chooses optimally at the current stage and at future stages and what
it means for the teacher to believe that the student believes he plays optimally at the current and
future stage. Subsequently, like in common belief in rationality, we can iterate these arguments to
arrive at a state where there is common belief in future rationality.

Definition 5.3 (Belief in the teacher’s future rationality).
Consider a dynamic epistemic model M = (Ti, bi)i∈I in the Surprise Exam Paradox with a type
t2 ∈ T2 for the student within that dynamic epistemic model. Moreover, consider an information
set h ∈ {∅, h1} and an information set h′ ∈ {∅, h1} that weakly follows h. Type t2 believes at h the
teacher will choose rationally at h′ whenever t2’s conditional belief b2(t2, h) only assigns positive
probability to strategy-type pairs (s1, t1) where s1 is optimal for t1 at h′ whenever s1 leads to h′.
Type t2 believes in the teacher’s future rationality at h if t2 believes that the teacher will
choose rationally at every h′ that weakly follows h.
We say type t2 believes in the teacher’s future rationality if t2 believes at both ∅ and h1 in
the teacher’s future rationality.

In other words, for the student to believe at ∅ in the teacher’s future rationality, he must believe
that the teacher will make an optimal choice at ∅ and at h1. Similarly, the student believes in
the teacher’s future rationality at h1 if he believes at h1 that the teacher will choose optimally at
h1. If the student believes in the teacher’s future rationality at both ∅ and h1 we say he believes
in the teacher’s future rationality throughout. The teacher always believes in the student’s future
rationality, as the student has no choices to make. Common belief in future rationality can now be
defined as follows for the Surprise Exam Paradox.

Definition 5.4 (Common belief in future rationality in the Surprise Exam Paradox).
Consider an epistemic model M = (Ti, bi)i∈I in the dynamic Surprise Exam Paradox. Moreover,
let a player i either represent the teacher or the student. For every player i and every type ti ∈ Ti,
we say that type ti expresses 1-fold belief in future rationality if ti believes in the opponent’s future
rationality.
For every k > 1, every player i, and every type ti ∈ Ti, we say that type ti expresses k-fold belief in
future rationality if ti only assigns positive probability at every information set h to the opponent’s
types that express (k-1)-fold belief in future rationality.

Type ti expresses common belief in future rationality if it expresses k-fold belief in future
rationality for every k.

Then, we can finally consider what it means for the teacher to have a rational strategy under
the reasoning concept considered.

Definition 5.5 (Rational strategy under common belief in future rationality).
We say that strategy s1 can be rationally chosen by the teacher under common belief in future
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rationality if there is a dynamic epistemic model M = (Ti, bi)i∈I and a type t1 ∈ T1 for the teacher
within that model such that t1 expresses common belief in future rationality and s1 is, at every
h ∈ {∅, h1} that it leads to, optimal for t1.

5.3 Psychological subgame perfect equilibrium

In the literature for dynamic psychological games there is a lot of reliance on equilibrium concepts.
Perhaps the most notable of such concepts is the psychological sequential equilibrium by Battigalli
and Dufwenberg (2009). As a refinement of the sequential psychological equilibrium by Geanakoplos
et al. (1989), it revolves around sequential rationality while allowing for utilities to be determined
by updated beliefs about the beliefs of others as well. In the surprise exam game we are considering
here there is however no apparent reason for the teacher to believe that the student would change
his belief between Wednesday and Thursday if the teacher already believed the student believed he
would not give the exam on Wednesday.

The equilibrium concept that is applicable to the class of dynamic psychological games we are
considering here is thus the equivalent of sequential psychological equilibrium with observed past
choices by Geanakoplos et al. (1989): psychological subgame perfection. Just like in a psychological
Nash equilibrium, reasoning from a psychological subgame perfect equilibrium stems from simple
belief hierarchies. This implies that also in a dynamic Surprise Exam Paradox at both information
sets ∅ and h1, the (conditional) belief hierarchies are generated by a first-order belief σ1 about
the teacher’s strategy. The difference now however is that we have σ1 = (σ1(h))h∈{∅,h1} with
σ1(∅) ∈ ∆S1(∅) and σ1(h1) ∈ ∆S1(h1). Thus σ1 specifies for both information sets a first-order
belief about the available choices at that information set for the teacher. The conditional belief
hierarchy β1(σ1) that is generated by σ1 in the Surprise Exam Paradox implies that (i) the teacher
believes at every h ∈ {∅, h1} that the student has belief σ1(h

′) at every h′ ∈ {∅, h1}, that (ii)
the teacher believes at every h ∈ {∅, h1} that the student believes at every h′ ∈ {∅, h1} that the
teacher believes at every h′′ ∈ {∅, h1} that the student has belief σ1(h

′′′) at every h′′′ ∈ {∅, h1},
and so on. Note that also in the dynamic scenario, by construction σ1 implies correctness of beliefs.

With the definition of a conditional belief hierarchy that is generated by σ1 clarified, we can now
turn to what it entails for there to be a psychological subgame perfect equilibrium in the Surprise
Exam Paradox.

Definition 5.6 (Psychological subgame perfect equilibrium).
Consider a dynamic surprise exam game portrayed in either Figure 2 or in Figure 3. Let σ1
be a first-order belief about the teacher’s choice. Let additionally β1(σ1) be the conditional belief
hierarchy for the teacher that is generated by σ1. Then σ1 constitutes a psychological subgame
perfect equilibrium if

∀h ∈ {∅, h1} : σ1(h)(s1) > 0⇒ ∀s′1 ∈ S1(h) : u1(s1, β1(σ1, h)) ≥ u1(s′1, β1(σ1, h)).

A psychological subgame perfect equilibrium β1(σ1) is thus such that it assigns in its second-
order belief positive probability only to a particular strategy such that this strategy maximizes
expected utility given the full conditional belief hierarchy that is generated by σ1. It should be
noted that a psychological subgame perfect equilibrium is not generally equivalent to having a
psychological Nash equilibrium at every subgame. Namely, the history of choices made in the
past does not capture all the necessary information for a player to determine his optimal choice,
which may also depend on what an opponent believed in the past or what an opponent might have
believed given a non-realised history of choices. This is a situation present in the game of Figure
2, but not in the game of Figure 3.
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5.4 Dynamic surprise exam: surprise possible by giving and not giving the
exam

We are now in a position to analyse the nature of the paradox in a dynamic setting. First let us
take the dynamic surprise exam game from Figure 2. In what ways can the teacher surprise the
student in this dynamic setting under common belief in future rationality? To answer this, let us
consider the epistemic model portrayed in Table 6. We can confirm that all types for the teacher
express common belief in future rationality here by showing that both types of the student believe
in the teacher’s future rationality. To show this, let us start at type t2 of the student. The student
then believes the teacher is of type t′1 at both ∅ and h1. If the teacher is of type t′1, he believes that
the student believes on Wednesday that he will choose to give the exam on Wednesday and that
the student believes on Thursday that he will in fact choose to give the exam on Thursday. Then,
on Wednesday it is optimal for the teacher to give the exam at least not on Wednesday, because
the student would otherwise anticipate his choice. Since the teacher believes on Wednesday that
the student believes on Thursday that the teacher will give the exam on Thursday, the teacher can
subsequently only believe to surprise the student by choosing to give the exam on Friday. Hence
following the strategy to not give the exam on Wednesday but rather on Friday is optimal for the
teacher on Wednesday (∅) and Thursday (h1) if he is of type t′1. Since these are exactly the beliefs
that the student’s type t2 holds while only considering the teacher’s type t′1, type t2 expresses
1-fold belief in future rationality. In case the student is of type t′2, he believes the teacher is of
type t1 at both ∅ and h1. The teacher’s type t1 believes the student believes, at both Wednesday
and Thursday, that the teacher will give the exam on Friday. Hence, if the teacher is of type t1,
choosing Wednesday is optimal at ∅ and not choosing Wednesday but Thursday is optimal at h1 for
the teacher. These are exactly the beliefs the student holds if he is of type t′2 on both Wednesday
and Thursday. Namely, type t′2 believes at ∅ that the teacher chooses Wednesday and at h1 that
the teacher will choose Thursday. Hence the student’s type t′2 expresses 1-fold belief in future
rationality.

As types t1 and t′1 only assign positive probabilities to types of the student, we automatically
have that both believe in the student’s future rationality at both ∅ and h1. Hence all types express
common belief in future rationality. Consequently, under common belief in future rationality the

Table 6: Epistemic model for ”Dynamic situation with surprise possible by giving or not giving
exam”

T1 = {t1, t′1}
Types T2 = {t2, t′2}

Beliefs for Teacher
b1(t1,∅) = t2
b1(t1, h1) = t2

b1(t
′
1,∅) = t′2

b1(t
′
1, h1) = t′2

Beliefs for Student
b2(t2,∅) = (Fr, t′1)
b2(t2, h1) = (Fr, t′1)

b2(t
′
2,∅) = (W, t1)

b2(t
′
2, h1) = (Th, t1)
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teacher can rationally choose to give the exam on Wednesday, Thursday or Friday, since Wednesday
and Thursday are optimal for t1 and Friday is an optimal choice for t′1.

This epistemic model is a special case in the sense that if the teacher has the belief hierarchy
induced by t1, then he believes he is able to fully surprise the student at every single information set
by giving the exam on Wednesday or Thursday. Namely, at ∅ he can rationally choose Wednesday
while believing that the student fully believes the teacher will not give the exam on Wednesday. If
for some reason the teacher chooses not to give the exam on Wednesday while being of type t1, then
still the teacher can fully surprise the student by giving the exam on Thursday, as he believes the
student at h1 believes that the teacher will give the exam on Friday. Additionally, if the teacher has
the belief hierarchy induced by t′1, he might expect an even higher expected utility, if η > 1

2 . That
is, the teacher believes the student believes on Wednesday he will give the exam on Wednesday.
By not giving it on Wednesday, the teacher can carry over some utility already from surprising
the student by not giving the exam. Then, by not giving the exam on Thursday, some additional
utility is gained. As such, the teacher’s options for surprising the student have increased, since he
has now more days available to surprise the student on.

This result contrasts with the possible strategies and beliefs under the concept of a psychological
subgame perfect equilibrium. We know from our discussion at Section 3.1 that we must have
σ1(h1)(Th) = 1

η+1 . Then, it must be the case that σ1(∅)(W ) = 1
(η+1)2

. To see why, consider the

contrary. Say σ1(∅)(W ) > 1
(η+1)2

. Then it would be always optimal to not choose Wednesday.

Namely, we have:

u1((W,σ1),∅) = 1− σ1(∅)(W ) < 1− 1

(η + 1)2
.

By not choosing Wednesday (NW ), the expected utility at ∅ if the teacher expects the student to
believe he will give the exam on Wednesday, thus conditional on σ1(∅)(W ) = 1, is

u1((NW,σ1),∅|σ1(∅)(W ) = 1) =
η

η + 1
+ η = 1− 1

η + 1
+ η.

Namely, in equilibrium the teacher receives η
η+1 at h1, and he receives an additional η from surprising

the student at ∅ by not giving the exam. Similarly, we have for not choosing Wednesday while the
student believes the teacher does not choose Wednesday:

u1((NW,σ1),∅|σ1(∅)(W ) = 0) =
η

η + 1
= 1− 1

η + 1
.

In this case, the student expects the teacher to not choose Wednesday, and hence the teacher does
not receive this extra η. As we assumed utility would be linear in the second-order expectations,
we have an expected utility at ∅ of

u1((NW,σ1),∅) = σ1(∅)(W )(1− 1

η + 1
+ η) + (1− σ1(∅)(W ))(1− 1

η + 1
)

= 1 + σ1(∅)(W )η − η + 1

(η + 1)2
> 1 +

1

(η + 1)2
η − η + 1

(η + 1)2
= 1− 1

(η + 1)2
.

Hence, it is optimal for the teacher to not choose Wednesday. However, the student would antic-
ipate that not choosing Wednesday is optimal for teacher and will thus expect him not to choose
Wednesday. But then we have σ1(∅)(W ) = 0 < 1

(η+1)2
, a contradiction.

Now let us consider the opposite. Let σ1(∅)(W ) < 1
(η+1)2

. Then we can implicitly infer from the

relations highlighted above that u1((W,σ1),∅) > u1((NW,σ1),∅). Again, however, the student
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Figure 4: Expected utilities in equilibrium for game in Figure 2

would be able to anticipate that the teacher would choose to give the exam on Wednesday. This
would give us σ1(∅)(W ) = 1 > 1

(η+1)2
, a contradiction.

In equilibrium, the expected utility for the teacher at Wednesday from choosing Wednesday
is u1((W,σ1),∅) = 1 − 1

(η+1)2
and the utility from not choosing Wednesday but either Thurs-

day or Friday is also u1((NW,σ1),∅) = 1 − 1
(η+1)2

. Similarly, it can also be confirmed that

u1((Th, σ1), h1) = u1((Fr, σ1), h1) = 1 − 1
(η+1)2

. Namely, from σ1 we can also infer what the

teacher believes at h1 what the student believes at h1 and what the student believed at ∅. Note
that this equilibrium utility is strictly larger than the utility the teacher expects to get in equilib-
rium in the static game, which was 1 − 1

(η+1) . In fact, if we extend the psychological game even
further to allow for more days to potentially give an exam on, the expected utility will increase even
further (Mourmans, 2017). The intuition behind this is simple: as the number of days between the
announcement and the last possible day to give the exam increases, there are more options for the
teacher to potentially surprise the student. It thus becomes less likely for the student to anticipate
the day of the exam. On the other hand, being able to divert the exam on more occasions, the
teacher can accumulate utility from surprising the student by not giving the exam. The effect of
this relation on the teacher’s expected utility is portrayed in Figure 4. For formal proofs we refer
the reader to Geanakoplos (1996) and Mourmans (2017).7

Extending the surprise exam game to more than three days will not have an effect on the
possibility of the teacher being able to fully surprise the student under common belief in future
rationality or not. That is, we already established that in a two-day example this is already well
possible. However, adding more days to the problem will expand the set of rational strategies under
common belief in future rationality. By slightly modifying the epistemic model in Table 6 this can
be accommodated for. For instance, in case of a four day example we could simply extend the
epistemic model in Table 6 such that type t2 of the student believes at Tuesday the teacher will
choose Friday and type t′2 of the student believes on Tuesday the teacher will choose to give the
exam on Tuesday. In such a model, the teacher is able to surprise the student under common belief
in future rationality on Tuesday, Wednesday, Thursday and Friday, depending on his own type.

7This also is the intuition behind the results of Sober (1998), though now in the setting of a psychological game.
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However, as Geanakoplos (1996) and Mourmans (2017) point out, the subgame perfect equilibrium
remains unique.

Thus, much like in the static scenario with common belief in rationality, there are in this
version of the dynamic surprise exam potentially many belief hierarchies possible that express
common belief in future rationality and where the teacher can (partially) surprise the student.
These belief hierarchies include at least one where the teacher believes he can fully surprise the
student at every information set. In fact, by extending the game by one day compared to the static
scenario the teacher has gained extra options to fully surprise the student. At the other end we
have the belief hierarchy that is generated by the psychological subgame perfect equilibrium. Under
a psychological subgame perfect equilibrium, the options for surprise in this version are limited.
Again, the main reason for that observation is the requirement of correct beliefs. Even though the
teacher’s expected utility in the psychological subgame perfect equilibrium increases with the time
horizon and thus his options to surprise the student increase, actual full surprise is still not possible
under this concept.

5.5 Dynamic surprise exam: surprise possible only by giving the exam

Instead of having 0 < η ≤ 1, we could also consider η = 0. This is the dynamic version of the game
discussed in Section 3.2, in which the teacher only believes he can possibly surprise the student by
in fact giving the exam. This is the version of the surprise exam paradox that is most often referred
to and best captures the crux of the paradox. The resulting psychological game is presented in
Figure 3. For the purpose of analysing this game, we can utilise the epistemic model presented
in Section 5.4, now repeated in Table 7. In a similar fashion as before, it can be verified that all
types express common belief in future rationality. Since Wednesday and Thursday are optimal
for the teacher’s type t1, and Friday is optimal for his type t′1, the teacher can rationally choose
Wednesday, Thursday or Friday under common belief in future rationality.

Type t1 represents only one example of a conditional belief hierarchy that expresses common
belief in future rationality and under which full surprise is possible. That is, we might as well have
considered a belief hierarchy encoded by a type t∗1 for the teacher which is similar to his type t1
except that, at ∅ and/or h1, he believes the student also assigns some positive probability to the
teacher choosing Thursday instead of only Friday. Then full surprise on Wednesday by choosing

Table 7: Epistemic model for ”Dynamic situation with surprise possible only by giving the exam”

T1 = {t1, t′1}
Types T2 = {t2, t′2}

Beliefs for Teacher
b1(t1,∅) = t2
b1(t1, h1) = t2

b1(t
′
1,∅) = t′2

b1(t
′
1, h1) = t′2

Beliefs for Student
b2(t2,∅) = (Fr, t′1)
b2(t2, h1) = (Fr, t′1)

b2(t
′
2,∅) = (W, t1)

b2(t
′
2, h1) = (Th, t1)
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Wednesday would still have been possible under common belief in future rationality. Thus, not only
the set of rational strategies has become larger when adding an extra day to the problem. Also
the set of conditional belief hierarchies that allow for full surprise has expanded, as the amount of
first-order beliefs of the student under which the teacher can expect to fully surprise the student
has increased. Moreover, by expanding the game, full surprise on some day no longer requires the
condition that at Thursday the teacher must expect the student to fully believe the teacher will
choose Friday, even though Friday can never lead to a surprise. In other words, the student no
longer needs to fully doubt the teacher’s announcement of simultaneously giving and exam and
surprising him for the teacher to believe that he is able to fully surprise the student.

It is also important to point out here that the issue of believing the teacher may give the exam
on the last day may become less of a realistic obstruct for the teacher if the game gets extended
to include an arbitrary large number of days above two. Let us for instance consider the extreme
situation in which the teacher believes he can fully surprise the student on any day before the last
day. This is possible if the teacher believes the student believes at any given day that the teacher
will give the exam the next day. This would inadvertently lead to a conditional belief hierarchy
in which the teacher believes at the second-to-last day (Thursday) that the student believes the
teacher will give the exam on the last day (Friday). Again, like in the static scenario of this
version, the student should fully doubt the teacher’s statement of simultaneously giving the exam
and surprising the student, if the teacher is to believe he can fully surprise the student on Thursday.
However, one may wonder whether this condition of a non-cautious belief held about the last day
is much of a realistic obstacle when it pertains to the teacher trying to fully surprise the student
at one of the first days of a sequence of days, especially when the time horizon is sufficiently long.8

Referring back to the discussion on cautious reasoning, for Friday to be considered an optimal
strategy at ∅ by the student, he must not only believe that the teacher believes he believes that the
teacher will choose Thursday at h1 with certainty, but also Wednesday at ∅ with certainty. Only
then it is optimal for the teacher to not choose Wednesday at ∅ and subsequently also Friday at
h1. So the required certainty about the teacher’s choice now applies to two days. If we assume the
student to be a cautious reasoner, then we know from Section 4 that the student must primarily
believe at h1 that the teacher will give the exam on Thursday. Consequently, the teacher would only
be able to surprise the student up to an infinitesimal probability, say ε. Then at ∅, if we further
assume that the student’s non-standard beliefs at ∅ are similarly described as at h1, the student
must primarily believe that the teacher will choose Wednesday. Namely, choosing Thursday under
such beliefs would give the teacher a utility of at most ε(1− ε) whereas choosing Wednesday would
give at least ε. Hence, also in the dynamic surprise exam game, common full belief in caution
causes surprise to be virtually impossible.

Also in a dynamic setting, psychological subgame perfect equilibrium again faces the same pitfall
as traditional game theory does. In section 3.2 we already established that σ1(h1)(Th) = 1 needs
to be the case. This belief would give the teacher always a utility of 0 at h1. However, then we
know that it must be the case that σ1(∅)(W ) = 1 too. Namely, if σ1(∅)(W ) < 1, then the teacher
would always be better off by choosing Wednesday. The student would be able to anticipate this
and hence believe that σ1(∅)(W ) = 1, a contradiction.

The discussion above explains where equilibrium concepts tend to go wrong in analyzing the
Surprise Exam Paradox. The fact that Thursday is always an optimal choice at h1, does not mean
that Friday is ruled out as a possible choice for the teacher. The teacher only wishes to surprise
the student, yet the exam eventually has to be given. If Friday still happens to be ruled out, then

8Kim and Vadusevan (2017) derive a similar effect of the time horizon when considering the coherency of the
teacher’s announcement in a Bayesian analysis.
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surprise on Thursday is no longer possible. However, this again does not mean that it is impossible
for the student to consider any day after Wednesday as a choice for the teacher at ∅. As long as
there is a belief hierarchy that expresses common belief in future rationality such that the teacher
believes the student believes at any given day that the exam will be given in the future, the teacher
can believe surprising the student is possible. In this particular version of the game this means there
is at least another possible belief hierarchy conceivable for the teacher that believes the student
believes the teacher will give the exam on the present day. The reasonable doubt of the student
in the announcement of the teacher is what allows the teacher to back up his statements about
surprising the student. Much like psychological Nash equilibrium, a psychological subgame perfect
equilibrium imposes an additional requirement of correctness in beliefs however, which implies the
teacher has a simple belief hierarchy. Whereas extending the Surprise Exam Paradox allowed more
possibilities for surprise under common belief in future rationality, under psychological subgame
perfection there is still a unique combination of beliefs, which allows for no surprise. As such, the
correct beliefs assumption underlying a psychological subgame perfect equilibrium, like in its static
counterpart, significantly reduces the teacher’s ability to surprise the student. One can question
how realistic it is for the teacher to have a simple belief hierarchy that is characterised by the
equilibrium in a one-shot scenario like the surprise exam game, even more so when dynamics make
the situation more complex.

6 Conclusion

The Surprise Exam Paradox has slowly garnered some interest from the field of game theory in
recent times. On a surface level, it appears to highlight some potential red flags for backward
induction reasoning in games. Common belief in future rationality formally captures where the
student’s backward induction reasoning goes wrong if he reaches a conclusion that the teacher
cannot possibly surprise him. Namely, even though in the actual crux of the paradox the teacher
cannot surprise the student on the last day, it does not follow from this that the student cannot
believe he will give the exam on the last day.

Common belief in future rationality in a setting of psychological games shows there exists a
valid reason for the student to doubt the validity of the teacher’s announcement of surprising him
by giving the exam, even on the last day. If the student believes all the teacher’s routes to surprising
the student have been cut off, it is reasonable for the student to believe the teacher is thinking about
giving the exam on the last day. Equilibrium concepts in psychological game theory are inherently
incapable of capturing such doubts because of their assumptions on correctness of beliefs. These
doubts are however essential to the whole game of the surprise exam, as they allow the teacher to
eventually follow up on his announcement.

More generally, equilibria in psychological games may be less realistic than in traditional games.
Whereas repeated play in traditional games may move players towards an equilibrium as they learn
about their opponents’ beliefs because of observed actions, players in psychological games derive
utility from their opponents’ beliefs, which may not be observable at all. On the other hand, in
psychological games decision-makers are forced to consider more explicitly their own belief hierarchy,
as their preferences are shaped by it. Consequently, reasoning concepts that explicitly rest on such
belief hierarchies, such as common belief in (future) rationality, appear to be even more natural in
the setting of psychological games.

Paradoxes make us aware of flaws in our reasoning and bounds in our understanding of certain
problems. In that regard, the Surprise Exam Paradox teaches us a special lesson, namely that we
may be limiting our understanding of the problem by using a too restrictive manner of reasoning.
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