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 FUNCTION THEORY ON SOME NONARCHIMEDEAN FIELDS

 ABRAHAM ROBINSON, Yale University

 1. Introduction. Archimedes' axiom states that for any two positive numbers a

 and b, a smaller than b, the continued addition of a to itself ultimately yields numbers
 which are greater than b. More formally, if F is an ordered abelian group or, more

 particularly, an ordered field, then Archimedes' axiom is as follows.

 1.1. If 0 < a < b, where a and b are elements of F then there exists a natural
 number n such that

 a+a *+* +a>b.

 n times

 Throughout the history of mathematics, Archimedes' axiom has been associated
 with the foundations of the Differential and Integral Calculus. Already in Greek
 science the method which, much later, was dubbed the method of exhaustion and
 which, to a large extent, anticipated the 8, S method in the calculation of areas and
 volumes, depended on the validity of Archimedes' axiom, which was formulated
 explicitly for this purpose. On the other hand, when a method of infinitely small and
 infinitely large numbers is used, as in Nonstandard Analysis, then it is just the non-
 archimedean nature of the system which is essential for its success or, more precisely,
 the superposition of a nonarchimedean field on the archimedean field of real numbers.

 Although Nonstandard Analysis (see [4] or [6]) may perhaps be regarded as
 the most successful effort in this direction, many other systems have been introduced
 for the same purpose. Thus, not long ago, D. Laugwitz [2] considered a theory of
 functions on the field L of generalized power series with real coefficients and real
 exponents. The same field was investigated many years earlier by T. Levi-Civita
 [3], also because of its nonarchimedean character, and by A. Ostrowski [5], in
 connection with the theory of valuations.

 Laugwitz raised the question whether the functions considered by him satisfy
 the intermediate value theorem and the mean value theorem of the Differential
 Calculus. We shall show in the present paper that although these theorems are not
 valid here in full generality, they are true under rather wide conditions. In order to

 obtain these results, we shall embed L in the residue class field PR of a certain subring
 of a nonstandard model of Analysis, *R. It appears that 'R has many interesting
 properties which make it a suitable subject for investigation quite apart from the
 particular problem just mentioned. In particular, the behavior of a function on PR
 is closely connected with the theory of asymptotic expansions, although we shall not
 pursue this topic in the present paper.

 87
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 88 ABRAHAM ROBINSON [June-July

 2. Ordered fields and fields with valuation. An ordered field F is a commutative

 field in which an ordering relation x < y (or, equivalently, y > x) is defined and
 satisfies the following conditions.

 2.1. The ordering is transitive, x < y and y < z implies x < z, and irreflexive,
 x <y implies x # y.

 2.2. The ordering is total, if x # y then either x < y or y < x (but not both,

 by 2.1).

 2.3. The ordering is related to addition by the requirement that x < y implies

 x + z < y + z; and to multiplication by the requirement that x < y and 0 < z

 implies xz < yz.

 An ordered field can be characterized also by means of the set of its positive

 elements P = {x I x > 0}. Thus, suppose that a subset P of a field F possesses the
 following properties.

 2.4. 0 P; for all x : 0, xeP or -xeP.
 2.5. If x, yeP, then x+yeP and xyeP.

 Then the relation defined by

 x <y if and only if y - x e P

 satisfies the conditions 2.1-2.3 and P is just the set of positive elements of the field

 according to this relation.
 We shall suppose that the reader is familiar with the elementary properties of

 ordered fields, e.g., that an ordered field is of characteristic 0 and that x2 > 0 for all
 x # 0. As usual, we write x < y or y > x if either x < y or x = y.

 The rational numbers form an ordered field Q whose positive elements are the
 fractions (ratios) of natural numbers different from zero, and the real numbers form
 an ordered field R whose positive elements are just the squares other than zero. In

 both cases the ordering is unique. Moreover, both Q and R are archimedean, i.e.,
 they satisfy Archimedes' Axiom 1.1.

 Perhaps the simplest example of a non-archimedean field is as follows. Let R(t)

 be a simple transcendental extension of the field of real numbers R. Thus R(t) may be
 identified with the field of rational functions of the indeterminate t with coefficients

 in R, each element of R(t) may be written in the form

 p(t) aO + alt + + antn
 (2.6) f q(t) bo + b1t + + bmtm'

 where q(t) # 0, at least one of the bi is different from 0. We may then suppose the
 first bj # 0 is actually equal to 1, for if this is not the case from the outset, we may
 achieve it by multiplying the numerator and denominator on the right hand side
 of (2.6) by b-j1. Thus, if f # 0, we may write
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 1973] FUNCTION THEORY ON SOME NONARCHIMEDEAN FIELDS 89

 (2.7) f tJ + b +t'+; + - + b tm ' akA 0 ?
 O<kin, O?j?!9m.

 We now determine an ordering in R(t) by defining that f : 0 is positive if and

 only if ak > 0. To make sure that this is a good definition one first has to check that
 it is independent of the particular representation (2.7) chosen for the given f. Next

 one verifies that the set of positive elements of R(t) defined in this way satisfies the
 conditions of 2.4 and 2.5. We suppose that these rather simple tasks have been

 carried out so that R(t) becomes indeed an ordered field with the above definition.
 Moreover, this ordered field is nonarchimedean. For, by our definitions, 0 < t, t < 1

 (since 1 - t is positive) and, for any positive integer n,

 t+t+.. +t <1
 n times

 (since 1 - nt is positive). This shows that 1.1 is not satisfied.
 In any ordered field, the absolute value of a number a is defined to be j a = a if

 a > O, otherwise a =-a. Then I abl a jb and j a + b <al + I b (triangle
 inequality).

 Let F be a nonarchimedean ordered field. Then F is of characteristic 0 and,

 hence, contains the field of rational numbers Q. An element a e F is said to be infinite

 if a I > q for all q E Q. Also, a E F is said to be infinitely small or infinitesimal if
 I a < q for all positive q E Q. a E F is finite if it is not infinite. This will be the
 case if and only if j a < q for some q e Q.

 The finite elements of F constitute a subring Fo of F. The infinitesimal elements of
 F constitute a proper ideal F1 within Fo. F1 is maximal in Fo as can be seen by the
 following argument. Suppose that F1 c J c Fo where J is an ideal in Fo, such that
 J - F1 # 0. Let a E J - F1 then a is not infinitesimal. We conclude without dif-
 ficulty that a1 is finite, so a1 E Fo, aa- 1 =E J. But then J = Fo, F1 is maximal
 in Fo.

 It follows that F' = Fo /F, is a field. F' is called the residue class field of the
 ordering. The canonical mapping Fo ? F' induces an ordering in F' according to
 the rule that, for any a E F', a $ 0, a is to be positive in F' if and only if one (and
 hence, all) of the elements of *f la is (are) positive. It is not difficult to show that
 F' is archimedean according to this ordering and (hence) that it is isomorphic and

 order-isomorphic to a subfield of R.

 The cosets of F1 as an additive subgroup of F are called monads. If a is any

 element of F then we denote the monad containing it by ,(a). In particular, p(O) =F1,.
 The monads which are subsets of Fo may be identified with the elements of F'.

 As a tool in our investigation of nonarchimedean fields we shall require also the
 notion of a field with valuation, more particularly, the notion of a field with non-
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 90 ABRAHAM ROBINSON [June-July

 archimedean valuation in the real numbers. This concept is given by a field F

 together with a mapping v(x) from F - {0} into the real numbers R such that the
 following conditions are satisfied:

 2.8. For all x # 0, y # 0 in F, v(xy) = v(x) + v(y).

 2.9. For all x,y in F such that x #0, y#O, x +y # 0,

 v(x + y) ? min (v(x), v(y)).

 If we add to R an element oo (usually called "a symbol") with the rules

 x + oo = so + x = oo + oo = oo and the stipulation that so > x for all real x, then
 the auxiliary definition v(O) = oo ensures that the equations of 2.8 and 2.9 are

 satisfied without any restriction on x and y.

 The set OF = {x e F I v(x) > 0} is a subring of F, the valuation ring, and the set
 JF= {x e FI v(x) > 0} constitutes a maximal ideal in OF, the valuation ideal. The
 field F = OF IJF is called the residue class field of the given valuation.

 Let c be an arbitrary but fixed constant greater than 1. Then the definition of
 distance

 d(x,y)= c - X-Y)

 where c is interpreted as 0, turins F into a metric space. If every Cauchy sequence
 in that space has a limit then F is said to be complete for the given valuation.

 See [1], [7] or [8] for basic facts in valuation theory. From now on such facts
 will be taken for granted.

 3. The field L. The field R(t) is inadequate for the development of the calculus
 because we cannot extend to it even some of the most common functions defined in

 the field of real numbers, e.g., the function y = V,/x. Passing to the field of formal
 Laurent series IX'__ aktk, ak- eR, does not remedy the situation. Following
 Laugwitz, we therefore consider the field of generalized power series L, which is
 defined as follows:

 The elements of L are the formal expressions

 co

 (3.1) X ak t ak, vke R, Vk t 00,
 k = 0

 (where the last symbol implies vO < v1 < v2 < -..). Two expressions (3.1) are, by
 definition regarded as equal if for any term av which occurs in one but not in the

 other, a = 0. We shall also write aotvo + a,tvI + .. + aktvk for an expression for
 which ak+l= ak+2 = ?=0

 The sum of two expressions I aktvk and E bktMk as in (3.1) is the expression
 X ckt.k which is defined as follows. The sequence {Ak} is the set theoretical union of

 the sequences {Vk} and {Mk} arranged in increasing order. If a particular A. occurs
 both in {Vk} and in {Mk} e.g., m= Vp =/q then cm = ap + bq; if Am = vp but Am does
 not occur in {jk} then Cm = ap; and if Am = /1q but Am does not occur in {vk} then
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 1973] FUNCTION THEORY ON SOME NONARCHIMEDEAN FIELDS 91

 Cm = bq. Thus, briefly, the sum kt is obtained by the formal addition of the terms

 of I aktvk and E bktH . Similarly, the product z cktl of aktv and I bktlkas in 3.1 is
 obtained by formal multiplication. Thus, the sequence {4k} consists of the sums

 vp + !tq arranged in increasing order and ck = I apbq where p and q range over the
 natural numbers such that vp + Al = 4k It is not difficult to see that all these sums
 are finite and that the resulting expression satisfies the conditions of (3.1). Moreover,
 our definitions of sums and products are compatible with the relation of equality
 introduced earlier, and they turn L into a ring whose zero and unit elements may be
 written as Ot? + Otl + Ot2 + .., or 0, and as lt? + Ot' + Ot2 + _*_, or 1.

 Now let ot = 1 + Sk - aktvk, O<V1<V2<.*O, i.e., a is an element of L

 as in 3.1 with vo = 0, ao = 1. We wish to show that a possesses a multiplicative
 inverse in L. For this purpose we define P as the formal expansion in powers of t of
 the expression

 oo) oo 2 so 3

 - E aktVk + (d aktVk (k, aktv) +
 k=l ~~k=1 k=1

 Again it is not difficult to see that this expansion can be worked out and that it is

 of the form fl= 1 + ' bktfk here 0 < 1M< 2 < *oo, so that P belongs to L.
 We now claim that cxfa = 1. To see this, consider the identity

 (3.2) (1 + y) (1 - y + y2 _ y3 + + y2m)= I + y2m+1

 which holds in L for arbitrary natural m. We may substitute I' I aktVk for y and
 expand on both sides of (3.2). This yields an equation

 (3.3) c43' = y'

 where ,B' is the expansion of

 00 X0 2 OC) 2m
 1- (I aktVk + ( akt) - ... + Z aktVk

 k= 1 k= 1 k= 1

 and y' is the expansion of 1 + (Sk-l aktvk)2m+l. But then /3' differs from /3 only in
 powers of t whose exponent is at least (2m + 1)v1 and y' differs from 1 only in powers
 of t whose exponent also is at least (2m + 1)v1. Since m is an arbitrary natural

 number, we conclude that afl = 1, /3 = ot-
 Now let cx e L be different from zero, otherwise arbitrary. Then a= k% akt

 where we may assume that ao 0 0. Putting cx = aotv' a' where

 co

 oc' = 1 + , (aklao)tvkv-,
 k = I

 we then obtain a- ' t-vo a'x 'as the multiplicative inverse of a.
 Thus, L is a field. We introduce an ordering of L by defining that an element
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 a e L, a # 0 is positive if and only if the nonvanishing coefficient ak with lowest
 subscript m in the expression a = 'kO ak=kt iS positive. Also, L obtains a valuation
 by defining v(ax) = vm (so that am : 0, ak = 0 for k < m), for a # 0, together with
 v(O) = oo in accordance with our general convention.

 In this valuation, the valuation ring OL consists of all elements of L which can be

 written as I ak t with v0 > 0, and this is also the ring of finite elements of L in the
 ordering of L; and the valuation ideal JL consists of all I akt vk with v0 > 0 and
 coincides with the set of infinitesimal elements of L. Thus, the residue class field of L

 with respect to its valuation coincides with the residue class field of L with respect to

 its ordering and is, in fact, the field of real numbvrs R. Also, since JL # {0}, L is

 nonarchimedean.

 There is a natural (and obvious) embedding (injection) of R into L: a -* a = at?
 + ot' + 0t2 + - and this extends, equally obviously, to an embedding of R[t] into

 L:

 ao + a,t + - + antn-* aot0 + a,t' + a2t2 + ... + antn + Otn+' +

 and hence, to an embedding of R(t) into L. The embedding is order preserving for

 the ordering of R(t) defined in section 2 above.

 It is shown in [5] that L is complete. It is also shown there that the field L' which
 is obtained by taking complex coefficients in place of the real coefficients in L, is

 algebraically closed. Since L' = L(V/-1) it follows (compare [7]) that L is real-
 closed, i.e., that every positive element of L possesses a square root in L and that

 every polynomial of odd degree in L[x] possesses a root in L. It follows in particular

 that a positive element of L possesses roots of all orders n = 2, 3, 4, --.. The same

 result is established by elementary means in [2] and will be used later in this paper.

 Now let f(x) be a real-valued infinitely differentiable function of a real variable

 which is defined in an interval a < x < b, a, b E R. On passing from R to L, we find

 that the interval a < x < b in L consists of points x = 4 + I' aktv, 0 <v,
 < *-* s o, of three kinds,

 (i) a < 4 < b,

 (ii) =a, aktVk >0, and
 k=1

 00

 (iii) = b, I ak tVk < 0.
 k=1

 In all these cases 4 is the unique real number which is infinitely close to x, i.e., such

 that x - 4 is infinitely small and (by analogy with the terminology in Nonstan-

 dard Analysis) we call 4 the standard part of x, 4 = Ox.
 Laugwitz extends the function f(x) to values of x in L with standard part {,

 a < 4 < b by using the formal Taylor expansion of f (x),
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 oo 1

 f(x + h) = ()(x)h
 n =0

 Thus, he defines for x = 4 + I' 1 aktVk
 ?? 1 \fln

 (3.4) Lf (x) = F,--! f (n)(0) ak tvl n=o n k

 where it is understood that Lf(x) is the element of L which is obtained by expanding

 the right hand side of (3.4) and rearranging it in powers of t. Once again, the condition

 v0 > 0 shows that this can be done.

 We shall show in the following sections that the definition proposed by Laug-

 witz is obtained in a natural way by relating L to a nonstandard model of Analysis.

 4. The field -R. Let *R be a nonstandard model of Analysis (cf. [4] and [6]).
 We shall suppose that *R is sequentially comprehensive. That is to say, if

 ao, a1, a2,. an, an, *, n E N, is a sequence of entities of *R (of the same type, if type
 restrictions are adopted), e.g., a sequence of numbers of *R, then there exists an

 internal sequence {snj in *R (where n now ranges over *N) such that Sn = an for all
 finite n.

 There exist sequentially comprehensive *R. More particularly, all *R which are

 ultrapowers are sequentially comprehensive. Thus, suppose *R = R'/D where D is a
 free ultrafilter on the index set I. Every internal entity of *R is represented by (is an

 equivalence class of) functions f (v) on I. Let fn(v) represent an, n = 0, 1,2, ..., and for
 each v e I, consider s(v) = {fJ(v)}. Then s(v), v ranging over I represents an internal
 sequence {s,J in *R. We claim that for each finite k, the value of that sequence is
 just ak. Now, in order to obtain the value of {sn} for n = k, we have to substitute the
 function f(v) -k for each n in fn(v). This yields precisely fk(v), i.e., ak.

 Supposing, from now on, that *R is sequentially comprehensive, we wish to

 show that the set of infinite natural numbers, *N - N, cannot be coinitial with co*.

 In other words:

 4.1. THEOREM. Let aO > a, > a2 > ... > an > n E N be a strictly decreasing
 sequence of infinite natural numbers, internal or external. Then there exists an
 infinite natural number a, such that an> a for all n E N.

 Proof. Since *R is sequentially comprehensive, we may suppose that, for all

 n e N, an = Sn where {snj is an internal sequence of numbers of *R. Consider the
 internal sequence

 t= . n n, n-*N. n~~~
 min (so, s 1, * * * Sn)

 Then 0 < tn < 1 for all finite n but tn > 1 for large infinite n. Hence there exists
 a smallest m, which must then be infinite, such that 0 < tm < 1 does not hold.
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 Thus, for k = m - 1,

 0?. k <
 -mln (sO, s1, 's'k)

 This shows that k < ao, k < a , -.., k < a,,, - for all finite n and proves the theorem.
 Now let p be an arbitrary but fixed positive infinitesimal number in *R. We

 define subsets Mo and M1 of *R by

 MO- {x e *R I I x I < p-n for some finite positive integer n},

 Ml = {x e *R f f X | pn for all finite positive integers n}.

 Evidently, M1 c Mo and MO D R. Both Mo and Ml are rings under the operations
 of *R. For if x XI _ p-n", y/ < pm, with n < m say, then

 X+yiI-xjI + Iyj <2p-M p-(m+l)

 and |xyj < p-(n"m) so Mo is a ring. And if |xI < pn, fy ? pn then Ix ? yf < 2p"
 < pn-l, I xyl ? p2n, Since, in the definition of Ml, n is arbitrary, this shows that M1
 also is a ring.

 Moreover, M1 is an ideal in MO, for if x E M1 and y E Mo then f yj < p-n for
 some natural number n, and since jXI < pm+n for all natural n, it follows that
 I xy I < pm for all natural m, xy E M1l. M1 is a proper ideal since it does not contain 1.
 Finally, M1 is a maximal ideal in Mo. For let J D M1 be another ideal in Mo such
 that J - M1 is not empty, and let x e J - M1. Then I x I > pm for some finite natural

 number m and so Ix'j < pm x- eMo. Hence 1 = xx1-eJ, J = Mo, showing
 that M1 is maximal.

 We conclude that the quotient ring 'R = Mo /M1 is a field. Moreover, the
 canonical map

 (4.2) l: Mo-+ PR

 induces an ordering in PR. For let x E Mo - M1, x > 0, and let x + y, y e M1 be any
 other element of the coset of x with respect to M1. Then I xf > pm for some finite

 natural number m and | y | pn for all finite natural numbers n. Hence I y I < I x |,
 and so x + y > x - I y = x f-f y I > 0, all elements of the coset of x are positive.
 Accordingly, we may define an ordering in 'R by defining that an element a e- R,
 oe 0 , is positive if and only if the elements of - l a are positive. Then the sum and

 product of positive elements of PR are positive but 0 E PR is not positive. This shows

 that our definition turns PR into an ordered field. We also observe that for any

 a e 'R, f - a is an interval in Mo and *R. Finally, since Ml contains only the single
 standard number 0, /R provides an embedding of R (as a subfield of *R) in PR.

 Next, we define a valuation in PR, as follows. For any a E PR, oa # 0, let x and

 x + y be elements of tC- lc, y E M1 and consider logp| x I and logpi x + y 1. Since I x I
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 1973] FUNCTION THEORY ON SOME NONARCHIMEDEAN FIELDS 95

 and I x + YI are greater than some positive, and smaller than some negative power
 of p, log,I xI and log, Ix + yj are finite and possess standard parts. We claim that

 ?(log [xl) = O(logPIx + yj),

 i.e., that

 logPlx + YI -logolXI = logol + Y/l

 is infinitesimal. But logp| 1 + (.y/x) I = In I 1 + (ylx) j /In p. Since ylx is infinitesimal
 and ln j wj is a standard function which is continuous at w = 1, ln I 1 + (y/x) I is in-
 finitesimal. Hence log, 11 + (y/x) j also is infinitesimal, as asserted.

 Accordingly, we obtain a unique definition of a function v(a) for a E "R, as : 0, by

 putting v(a) = ?(logp| x |) for any x E f 'la. We claim that this defines a valuation of
 the field 'R.

 Let a, 3e0 PR, o#0 , 130 and let xe4c la, ye=fIf. Then

 O(logpIxyj) = O(logpIxJ) + O(log Iyj)

 and so v(ax,) = v(x) + v(f3), as required. Next, suppose a + ,B # 0, then we have to
 show that v(a + ,B) > min (v(oe), v(s3)) or, equivalently, that

 (4.3) O(logp| x + yj) > min(o(log,IxJ), 0(logpjyI)).

 We may suppose without essential -loss of generality that log.| xj I log,, y J.
 Then (4.3) will hold precisely if there is an infinitesimal q such that

 logpI x + y I > logp I y I -,

 i.e., such that

 logp fI + x > _

 Putting x ly=w, we have to show log, I I + w I >- for logp| w ? > 0, (where we
 may rule out w -1 because of a + P f3 0). Put =logp I w |, I w I = pG, where
 or > 0, then

 1+w I 1 + I w I = 1 + per< 2p` = P +logP2

 logp/ 1 + wI > a+log 2> logp2.

 But lnp 2 is (negative) infinitesimal, and so (4.3) is proved. We supplement the
 definition of v(x) as usual by putting v(0) = oo.

 The valuation ring of the valuation just defined will be denoted by Op. It is not
 difficult to see that 0. includes the +-images of all finite elements of *R. However, Op
 includes other elements as well. For example, let A = a, lnp. Then v(A) = 0(log, / lnp |)

 = ?(ln I lnp I /lnp). But the expression in the parentheses on the right hand side is
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 96 ABRAHAM ROBINSON [June-July

 infinitesimal, for In p is (negative) infinite and

 Inx
 lim - = 0.
 x+oO x

 Hence v(i) = 0.

 We shall now show that the field 'R is complete for the valuation defined above.

 Defining the distance between two elements of 'R, a and ,B, by d(cx, ,) = c- (v-fl (see

 the end of section 2 above) let {aj} be a Cauchy sequence in this metric.

 (4.4) lim d(3xe, am) = 0.
 n - oo

 moo00

 Then we have to show that {a}j converges to a limit a in 'R.

 Choose elements xn E- e - I'n, n = 0, 1, 2, -**, n E N. Since *R is sequentially com-
 prehensive there exists an internal sequence {snj of elements of *R such that sn = xn for

 all finite n. We shall write xn in place of sn also for infinite n. By (4.4)

 lim v0(xn - am)= 00

 Equivalently, given any finite natural number k, there exists a finite natural j = ik
 such that

 (4.5) logpjxn-Xml > k for n,m> jk, n,me N.
 Now since 4.5 holds for all finite n and m greater than j, it holds for all n > j,

 m > j, n + m finite, i = Ik. A standard argument of Nonstandard Analysis, which
 was exemplified in the proof of 4.1, now shows that there exists an infinite natural

 CO = (Ok such that (4.5) holds for all n > j, m > j, and n + m < 2cOk and hence, in
 particular, for all n > j, m > j and n < Wk, m < WOk. Moreover, by determining

 Ct0, Ct1, (02, * one after the other, we may evidently assume that coo > co, > C02 > "'-
 Appealing to 4.1, we may then choose an infinite natural number Q which is smaller

 than coo, co1, 02 and-obviously, being infinite, larger than jo, ilh J2' Then,

 (4.6) logjxn -xn I>k for n> ik, neN, keN.
 (4.6) shows in the first place, that xn e Mo. To see this, choose n > jo then

 log,Ixn-xQI >0, so Ixn-xnj is finite. Also, xneMO, so jXnj ?p-m for some
 positive integer m and IXII |X-Xn I+IXn j2p-m<p-(m+1), xQceMO.

 Now let a = I,frxQ then we wish to show that limn_0 an = ac or, which is equivalent,
 that

 (4.7) lim v(;n-4)= oo.
 nf0oo

 But this is an immediate consequence of (4.6), since (4.6) implies
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 O(logp xnl) > kk- Ifor n> ik, neN, keN
 and this is the same as

 v(a,,- o)>k-l for n>jk, neN, keN

 which is just an explicit expression for the validity of (4.7). Thus, we have shown that

 PR is complete.

 Let p- = fp and consider any infinite series in 'R of the form

 (4.8) ao`vo + alp"3 + a2Thv2 + an E R c PR,

 Vo < V1 < v2 < 00,

 where the vj are standard real. The partial sums of (4.8) are

 Urk=aopvo+alpv+ ... +akpVk k=0,1,2,

 The value of any monomial in (4.8) is, for aj : 0, v(ajp1) = v(aj) + v(Q')

 = 0 + vj = vj, with v(ajPvJ) - so for aj = 0. Hence v(ak) = vj where j is the smallest
 subscript < k for which aj # 0, if any, otherwise V(ak) = oc. Also, for 0 ? k < 1

 U1 -ak = ak+lp k+ I + * + ai VI

 and so v(al - ok) > vk+ 1. This shows that {Uk} iS a Cauchy sequence, and the limit
 of that sequence, a is just the sum of (4.8). Also, v(a) = vj where j is the lowest
 subscript for which aj = 0 or, if there is no such j, i.e., if all aj vanish, v(u) = so and
 this is the case if and only if a = 0. As usual in the theory of infinite series, we identify

 (4.8) with its sum in 'R. It is then not difficult to verify that the sum of two numbers of

 uR,,a and T, given by (4.8) and

 (4.9) bop1" + b1, ,31 + b2p32 + *,bn E+R c -R,

 Ho < 91 < /-2 < * ** Q

 is represented by an expression

 COP'.? + ClpA + C2p 2 +.

 which is obtained from (4.8) and (4.9) just as the sum I Cktl' was obtained from
 E aktv' and bktfk as elements of L in section 3 above. The product of (4.8) and (4.9)
 also is obtained by the procedure described in section 3, with p for t. It follows that
 the mapping

 (4.10) D: aotvo+ aitvl + a2tv2 + *+aop vo + alpvl+ a2Pv2+ +

 -aeR, v0 v1 <v2 < V2 oo0,

 where the v1 are standard real, is a homomorphism from L into 'R. This homo-

 morphism is an injection since 1ot = 0 implies ao -a1 = a2 = 0 (see above)
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 and, hence, a = 0. It follows that 'DL is a field which is isomorphic to L and we write

 cDL-PL. Evidently, 'D is analytic (i.e., value preserving, v(cD(a)) = v(ox)). But (D is
 also order preserving, as can be shown by verifying that, for any a e L, (Da > 0 if and

 only if a > 0. Now for a # 0, a > 0 if and only if the first nonvanishing aj is positive,
 so we only have to show that an expression as in (4.8), f = aop3v + aIpvl+a2pv2 + *.
 is positive provided (without loss of generality) a0 > 0. Now, we may write Er = a,

 where a = aopVo + r, (log| j 'r I) ? v1. It follows that if v is an arbitrary standard

 real number between v0 and v1,v0 < v < v1 then log.1TjI > v, ITI < pv, aopvo> I T|
 and so

 a= aop v+ T> aopvo-ITI >0
 and hence, 6 > 0. Thus 1D is order preserving, as asserted.

 5. Functions in "R. Let f(x) be any real-valued function defined for a < x < b,

 a, b E R. On passing to *R, f(x) is extended automatically to a function *f(x) which

 is defined for a < x < b in *R. We wish to find a natural extension of the function

 f(x) as we pass from R to 'R.

 Such an extension can be obtained, under certain conditions, as follows. Let 4

 be any element of "R between a and b, a < 4 < b. Let f be the canonical homo-

 morphism from Mo to "R as before (see (4.2) above). Then we define

 (5.1) Pf(4)=3 f (*f(x)) for x E- , a < x < b

 provided the expression on the right hand side of (5.1) is independent of the particular

 choice of x subject to the stated conditions (a < x < b, fx = ,).
 Suppose in particular that f(x) satisfies a Lipschitz condition in any closed

 subinterval of a < x < b. Thus, for any a < a' < b' < b there exists a k = k(a', b')

 such that for any a' < x1 < X2 ? b',

 (5.2) If(X2) -f(XI) I k |X2-X1 j|
 Passing from R to *R, we see that (5.2) still holds, for standard a', b' and for

 arbitrary x1, x2 in the interval <a', b'>, if we affix a star to f(x2) and f(x1). In
 particular, it therefore holds for two points xl, x2 of *R which are infinitely close to

 some standard x0, a < xo < b (where the constant k may depend on x0).
 Now let 4 E PR be infinitely close to x0 E R. Then if x1, X2 belong to if - 1 , both x1

 and x2 are infinitely close to x0 in *R, and (5.2) applies for an appropriate standard k.

 But then x2- xeM1 and so, by (5.2),f(x2) -f(x1) eM1, f f(x2)= @f(x1). This
 shows that in this case, (5.1) provides a unique definition for 0f(4).

 In particular, the Lipschitz condition is satisfied iff(x) has a continuous derivative

 for a < x < b or, more particularly, if f(x) is infinitely differentiable in that interval.

 Suppose that this is the case and consider the restriction of If(x) to points

 < = ao + apvl + a2P V2+ ... 0 < VI < V2 < . a, a O < b.
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 We may compare Pf(x) for such a point with the function which is obtained by
 transferring Laugwitz' definition from L to PL, i.e., with the function

 F(x) = @(D(f((D-x)).

 We propose to show that Pf(x) actually coincides with F(x) for such argument
 values,

 (5.3) Pf(,) =

 In order to verify this identity, we observe that, except for rearrangements (which

 can be justified without difficulty within PR), the right hand side of (5.3) is simply

 the formal Taylor expansion in PR of f(x) about the point ao. Thus, our claim is that

 Pf(4) = f(a0) + a2PV2 +) +- _f(alpv+ a2P + .v)

 + .-- 4 nv (a(alpv' + a2p V2 + )n + ..

 in other words, that the Taylor series of Pf about ao converges at (. Put q = aPv'
 + a2pV2 + - and choose h E- so that a0 + h Ec-'1 By Taylor's formula with
 Lagrange's remainder term

 *f(ao + h) = *f(ao) + *f'(ao) h + *f(ao) h2 + I1! 2 !

 + *f(l(a)hn + *f( +'(ao+Oh)hn+1 + n! + (n +1)!

 where 0 ? 0 < 1. Now on the right hand side of this identity *f(k)(ao) =f(k)(ao) since

 ao is standard. Also, since f(x) is infinitely differentiable, f(n+ 1)(x), and hence
 *f(n+ 1)(x), is bounded by a standard real number in any standard closed subinterval

 of <a, b> and hence, is bounded by a standard number B in the monad of ao. Hence

 (5.5) f*f(+ ')(ao + oh) hn + l1 < B I h n+ I.
 (n + 1)!

 Let v be any standard positive number less than vl. Then (5.5) together with the fact
 that v(Q) = 0(logp| h |) > v1 shows that

 I*f(n +)(ao + Oh) h n+ 1 < p(n+ l)v
 I (n +1)

 Hence

 f*f(ao + h) - X, f-( k ) hk 1< p(+ 1W
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 and so

 v(Pf(4) kkO (k)(a) > (n + l)v.

 This shows that

 PfN) = lim S JV('o)
 n-oo k0=O

 proving (5.4).

 The identity (5.3) is of interest in itself since it provides a natural justification of

 Laugwitz' definition within a more comprehensive framework. Beyond that, by

 relating Laugwitz' theory to that wider framework, we are able to make use of the

 resources of Nonstandard Analysis in order to provide satisfactory answers to

 several problems which were left open by Laugwitz. We shall turn to this task in
 our next section.

 6. The intermediate value theorem in L. In view of (5.3), the function Pf(x),
 with values restricted to PL, behaves in exactly the same way as the function Lf(x)

 on a corresponding interval in L. Consider the real valued function f(x) which is

 defined in the interval - 1 < x < 1 by

 e-1/lXl for x#0,
 (6.1) f(x) =

 0 for x=0.

 Then f(x) is infinitely differentiable in the entire interval of definition, including

 x=0. At that pointf(')(x)=0 for n=0,1,2, .

 Let x1 = 0, x2 = i. Then Tf(x1) =f(x1) = 0, Pf(x2) =f(X2) = 1/e2. If Pf(X)
 satisfied the intermediate value theorem, there would exist a 4 E PL, 0 < < i, such

 that Pf(4) = p. We shall show that there is no such {.

 Suppose first that 4 is infinitely close to 0,

 , = aopv' + alpv' + a2 PV2 + *0 < vo < v, < *ooo, aO > ?.

 Then, by (5.4)

 TO = f (O)+f() f( + () 2+

 so Pf (,) cannot be equal to p.
 Suppose next that 4 is not infinitely close to 0. Then 4 = ao + i, where 0 < ao : i,

 v(Q) > 0 and so, by (5.4), Pf7() =f (ao) + ,, where v(4) > 0. This shows that Pf(,) is
 infinitely close to f(ao), which is a standard real number different from 0, and so
 again Pf(,) cannot be equal to p, which is infinitesimal.

 By contrast, if f(x) is continuous in an interval a < x < b and if the definition
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 (5.1) is effective in an interval x1 < x _ x2 where a < x1 < x2 < b, x1, x2 e PR, then
 the intermediate value theorem does apply in PR. That is to say, under these con-

 ditions:

 6.2. THEOREM. If Pf(x1) < ? < Pf(x2) for q e PR, then, there exists a 4 E PR,
 X1 < <X2 such that Pf() =q.

 To see this, we only have to choose elements of *R, x1, x'2, i' such that x'1 = x

 X'2 = X2, lt1' = ii. Then *f(x') < f' < *f(x') and so, by the intermediate value
 theorem for *f(x) there exists a (' e *R, x'1 < 4' < x2 such that *f (4) = i'. Putting

 = tf4' we then have Pf(,) = 0(*f(,')) = oqr'= il. This shows that the intermediate
 value theorem is satisfied in this case.

 For the remainder of this section, it will be our main purpose to show that the

 intermediate value theorem holds also in PL for functions Pf (x) which are obtained

 from infinitely differentiable functions f(x) in R-and hence, holds also in L for the

 corresponding functions Lf(x)-subject to rather mild restrictions, as follows.

 6.3. THEOREM. Let f(x) be a real-valued function which is defined and infinitely

 differentiable for a < x < b, a, beR and let Pf(x) be defined by 5.1. Suppose that

 for every x e R, a < x < b, there is a positive integer n such that f(')(x) # 0. For

 any X1, X2 E PL, a < X1 < X2 < b, let aO and bo be the uniquely defined elements of
 R which are infinitely close to x1 and x2 respectively, i.e.,

 x1 =ao +aipvl+a2Pv2+ ..., 0<v1 <V2< *V< oo,

 x2 = bo + b11p3 + b2P2+..., 0<u1 <2<-*-H+o0,

 and suppose that a < ao ? bo < b. Let i1 be an element of PL such that
 PA(XI) < ?1 < Pf(X2)-

 Then there exists a , e IL, x1 < , < x2, such that Pf(4) = r.

 Proof. Comparing 6.3 with 6.2 (which applies to the situation described in 6.3)

 we see that we only have to show that the 4 E PR mentioned in 6.2 belongs more

 particularly to PL. Choosing x', x', q' as in the proof of 6.2 such that 4'x' = x
 x2 = x2, fr' = i we have, for some c' e *R, x' < 4' < x, *f(E,) = if and hence

 Pf(4) = t where 4 = irX'. Now xl < ' < x2 implies that {' is finite and has a standard

 part, 0' - do_ where a < ao < do ? bo < b. At the same time, q must be of the form

 eO + e,j,V + e2j3A2 + ...,0 < Al<2 < *- ?O since it is in PL and finite. Hence,
 0o' = eo and f(do) = eo.

 Suppose now that f'(do) # 0. Then the inversion theorem is applicable. It follows
 that there exist h1 > 0, h2 > 0, k1 > 0, k2 > 0, such thatf(x) is a one-to-one mapping

 of the interval D defined by do - h1 < x < do + h2 on the interval E defined by
 eo- k1 < y < eo + k2 such that the inverse function g(y) = f - l(y) is infinitely
 differentiable on E. Passing to *R, we find that the infinitely differentiable function

 *f (x) maps *D in one-to-one correspondence on *E such that *g(y) is the inverse of
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 this mapping and is infinitely differentiable as well (in the sense of *R). Hence,

 = ' entails *g(q') = 4' and so

 = ir' = f(*g(q')) = Pg(t) E OL,

 proving our assertion in this case.

 Dropping the restriction that f'(do) = 0 (but not excluding this case) we put
 F(x) = f(x) - f(do) and define H(x) for a < x < b by

 F(x)
 r F(X) for x 0 do

 H(x) = X-do

 LF'(do) for x = do.

 Also, on the assumption of our theorem, there is an n > 0 such that

 F(do) = F'(do) = .. = FPn)(do) = 0, n 'i)(do) # 0.

 Then F(x) = H(x) (x - do), and so

 (6.4) F'(x) = H(x) + H'(x) (x - do) for x # do

 and, more generally,

 (6.5) F(k)(x) = kH(k- 1)(x) + H(k)(x) (x - do)

 for k = 1,2, *., x : do, a < x < b, by induction.
 We now wish to show that, for x : do,

 (6.6) H(A)(x) = + 1! (A 2) (x-ddo) +*

 F(,k+m)(d0)
 + ( +) (x - do)m-' + GA,m(x-do)m

 provided A _ 1, m > 1, where GQm is a linear combination with rational coefficient
 of values of F(P" +m+ ')(x) taken at points x' in the interval <do, x>.

 For A = 1, we have the Taylor expansion for F'(x)

 F'(x) = F'(do) + F"(do) (x - do) + . F. + PI +m)(do)(x - do)m

 + F(2+m)(do + 01(x-d)) (x- -

 where 0 < 01 < 1, while the Taylor expansion for F(x) yields

 H(x) = F'(do) + F"(d!) (x - do) + + F( dO)(x d)
 (6.7) 2! (m + 1)!

 F (2 +m)(do + 00(x - do)) (
 + (m +2)! ( om'
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 where 0 ? 00 < 1. Hence, from (6.4),

 HI(X) = F'(x) - H(x)
 H'(x) - (x - do)

 = 2(do) (m -1)! (1d+) (x - do)m' + Gl,m(x -do)

 where

 F(2+m)(do + 01(x - do)) F(2+m)(do + 00(x - do))
 Gjm, (m+1)! (m+2)!

 as required.

 Suppose now that the assertion has been proved up to some A >- 1, for all m ? 1.
 In order to prove the corresponding formula for A + 1, we write down the appropriate
 Taylor expansion for F(A+ ')(x), so

 - ~~~~F(Ak+ 2)(d0) F_____m __')(do
 F(+ 1)(x) = F(A+1)(dO) + 1 (x - do) + + - ! MI (x -do)m

 F(A+m+2)(do + o+(x - do)) (xl
 + (m + 1)! (x -do) +

 where 0 ? O+ 1 < 1 Then, by (6.5) and (6.6) (with m + 1 for m)

 H(A_+ 1)x 1 (x) (A + 1)H(A)(x)
 x--o

 A ++2 (m-1)! (A ( I + m)( + l,m(x do),

 where

 F(A+m+ 2)(do + OA+ 1(x - do))
 GA+ 1,m = (m + 1)! ,m+ 1-

 This proves (6.6). We now obtain immediately, for A > 1

 (6.8) lim H(-)(x) = F- l + ')(do)
 x-do +

 and this is true also for A = 0, by (6.7). On the other hand, we may calculate the

 derivatives of H(x) at do. We have, from (6.7), which is valid also for m = 0,

 H'(dl) = lim H(x) - H(d() = lm H(x) - F(d0) li F(do + 00(x - do))
 x-ddo x-do x-do x- do x-do 2

 F"(do)
 2'
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 where 00 may depend on x. Thus, H(x) has a continuous derivative everywhere in its

 interval of definition.

 Suppose now that we have proved that H(x) has continuous derivatives up to

 order. A? 1 in the entire interval of definition a < x < b such that HMA)(do)
 = FA + ')(do) /(Q + 1). We then make use of (6.6) for m = 2, where we observe that
 G1,2 (as a linear combination with fixed rational coefficients of values of P 3 for
 arguments x' in the interval <do, x>) remains bounded in the neighborhood of xo.
 Hence, for such x,

 H(-)(x) = F (do) + F(2?) (x - do) + O(x - do)2

 and so

 H0A)(x) - H(`)(do) F(__ 2)(do) = l +(
 x-do x-do A + 2 x-do

 This shows that H(x) possesses continuous derivatives of all orders in its interval

 of definition. In particular

 (6.9) H(A)(do) - "(do) (A + 1), A = 0, 1,

 and so

 H(do) = H'(do) = = H(n- (do) = 0 H n)(do) = :(d 0) o

 If n > 0, we may repeat our procedure, obtaining from H(x) a function H1(x) in the
 same way in which we obtained H(x) from F(x). Thus, putting

 (H(x)/(x - do) = F(x) /(x - d0)2 for x # do

 ) H'(do) for x =do,

 we find that H1(x) is infinitely differentiable for a < x < b and

 H1(d0) = H'1(d0) = =H7(n-2)(do) = 0 H(n- )(do) = ( n '() #do I I I ~~~~~~~~n(n + 1)

 Continuing in this way, we obtain after n - 1 more steps the function

 Hn (x) (x-do) = F(x)/(x - do )n+ f((x) - f(d) for x # do

 f f+ 1) (do) # 0, for x = d
 (n + 1)!

 which is infinitely differentiable for a < x < b.

 Suppose first that n is even, n + 1 is odd. Then the function w 1(n+ ), with
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 the determination that (H,(do))1('+ 1) be real, is infinitely differentiable in the
 neighborhood of H"(do) and so the function P(x) = (H1(x))1(n+') is infinitely
 differentiable in some neighborhood of x = do, for do - h < x < do + h, say. The
 function

 Q(x) = P(x) (x - do) = (f(x) - f(do)) 1/(n+1)

 therefore is also infinitely differentiable in the same interval, and

 Q'(x) = P(x) + P'(x) (x - do), Q'(do) = P(do) # 0.

 Passing to *R we see that, for x =

 Q(4 ) = (f(0) -f(do))1+' = - eo)+
 Hence

 PQ(O) = -((q' - eo)11"+ 1)) = l(n+ 1) e jL

 since L, and hence 'L, is real closed (see section 3 above). Hence, applying the

 inversion theorem to Q(x) at x = do (exactly as we applied it earlier to f(x) on the
 assumption that f'(do) # 0), and letting S(y) be the inverse function to Q(x) at
 x = do, y = 0, we obtain

 X = *d' = k (*S((q' - eo)ll(n+1))) = pS(n - eo)l-(n+ 1) e PL

 This disposes of the case that n is even.

 Suppose finally that n is odd, n + I is even. We may assume without loss of

 generality that Hn(do) =f(n+ ')(do) /(n + 1)! is positive, otherwise we consider - f(x)
 in place of f(x). Then f(x) - f(do) = Hn(x) (x - do)" + must be positive, for x : do
 in a sufficiently small neighborhood of do. Introducing P(x) = (Hn(x))11("+ 1) with the

 postiive determination for (Hn(do))" ("'l, and Q(x) = P(x) (x-do) we then have
 again that P(x) and Q(x) are infinitely differentiable in a neighborhood of x = do,
 and that Q'(do) = P(do) # 0. Also,

 *Q(4 ) = + (f(d') -f(do))(n + 1) - ? ('i' - 1(n+ )
 leading to PQ(Q) = ? ( e-e0)l(n+ 1), which is again an element of 'L. Finally,

 introducing the inverse function S(y) of Q(x) with S(O) = do, as before, we have

 = ufr = #r (S( ? ('-eo)"I(n+ 1))) = pS( + (,-eo)'1(+ 1)) e PL.

 The proof of Theorem 6.3 is now complete.

 Although the counterexample given at the beginning of the section shows that

 some restriction on the behavior of the derivatives of f(x) is required, the particular
 set of conditions given in 6.3, is not strictly necessary. Thus, if f(x) = const., then
 the conditions of the theorem are not satisfied but its conclusion is, trivially. Never-
 theless, 6.3 includes a large number of interesting cases, e.g., all non-constant real

 analytic functions f(x).

This content downloaded from 137.120.89.235 on Mon, 18 Dec 2017 10:11:18 UTC
All use subject to http://about.jstor.org/terms



 106 ABRAHAM ROBINSON [June-July

 7. The mean value theorem. Suppose the function f(x) is continuously dif-

 ferentiable for a < x < b. Let D be the set of points 4 E "R such that 4 is infinitely

 close to a point aO in the interior of that interval, a < aO < b. Then f'(x) is bounded
 in any closed subinterval a' < x ? b' of a < x < b and so f (x) satisfies a Lipschitz

 condition in that interval. Taking a' < aO < b' we see, therefore, that the definition
 5.1 is effective. We claim, moreover, that the resulting function "f (x) is continuous,

 in the sense of the metric of PR, at all points 4 e D.

 To see this, let {I ,} be a sequence of elements of D such that lime. ,,= 4 and
 choose a number 4' and a sequence {4n} in *R such that fr' = (, *en= {, n =0,

 1,2,*. Since lim fin= &, there exist a', b'eR such that a' < 4 < b', a' < 4'< b',
 a' <4,, < b', a' < n < b', n = 0,1,2,.1 . Let m be a bound forf'(x) in the closed
 interval a' ? x ? b' within R and, hence within *R. Then

 f (n') f = (*f ( + Gn' - 0))(n -
 for some 0 < 0 < 1 and, hence

 I '(NO T(0) |5 MI m n - |1

 This, together with lim n = n implies limPf(4") = PfT), proving our assertion.
 Suppose next that f(x) is twice continuously differentiable for a < x < b. In this

 case, we propose to show that Pf (x) is differentiable in D (in the sense of the metric
 of PR) and that on D,

 (7.1) d Pf(x) = P(f-'(x))
 dx

 For 4 in D and tj # 0 such that 4 + tj also belongs to D, choose 4' and n' for which
 V/= t, n' = t. Then there exists a 0' E *R, 0 < 0' < 1, such that

 (7.2) f( ' + n' f -W()= ''+?')

 Applying the mapping f to (7.2), we obtain

 (7.3) Pf(4 + i) - NO = (PfI(x))) -+0a,

 where 0 = W'. Now let il tend to zero. Then the right hand side of (7.3) tends to
 (Pf '(x))x=, since Pf '(x) is continuous on D. This proves (7.1).

 In particular, if f(x) is infinitely differentiable, then Pf () and (Pf '(x))x= belong
 to PL for 4 e PL. It follows that in that case Pf(x) is defined and infinitely differentiable
 in D f P L. Accordingly, the same is true of the function

 Lf(x) for x=ao+a,tv1+a2tv2+ ...<v<v2<...oo a<ao<b.

 (7.3), in combination with (7.1) shows also that the mean value theorem holds in

This content downloaded from 137.120.89.235 on Mon, 18 Dec 2017 10:11:18 UTC
All use subject to http://about.jstor.org/terms



 1973] FUNCTION THEORY ON SOME NONARCHIMEDEAN FIELDS 107

 PR under the stated conditions, more particularly for infinitely differentiable f (x).

 However, here again we may show that the mean value theorem breaks down, for

 certain infinitely differentiable functions, both in PL and in L. The function (6.1)

 which provided an example for the breakdown of the intermediate value theorem,

 will do also for the present issue as can be seen by considering the ratio of increments

 (f( 2) -f (1)) 0/( 2 -) for 2 =1 /(2 + p), 1 = - 1. There is no 3 eP L in the
 closed interval from 41 to 42 such that (Pf(x))' is equal to that ratio for x = 43.

 We shall prove, as our principal positive result in this area:

 7.4. THEOREM. Let f(x) be a real valued function which is defined and in-

 finitely differentiable for a < x < b; a, b E R and let Pf(x) be defined by 5.1. Suppose
 that for every x, a < x < b, there is an integer n > 2 such that f (n)(x) # 0. For any

 X1, X2 E PL, a < x1 < X2 < b, let aO and bo be the uniquely defined elements of R
 which are infinitely close to x1 and x2 respectively, i.e.,

 X =ao+aoi3vl+a2Pv2+ .,0 <Vl <V2 < * 0?,

 x2 = bo + blpgl + b2P 12 + , < YI < Y2 < 00

 and suppose that a < ao < bo < b.
 Then there exists a 4 E PL, X1 < X2 such that

 f(X2) - Pf(Xi) d_ /
 X2-X1 fx))

 Here again there is an exactly corresponding theorem for the function Lf(x) in L.
 The conditions of the theorem are not necessary since they exclude all functions of

 constant slope, for which the conclusion of the theorem is obviously correct. However,
 the theorem is nevertheless of a rather general character, including, for example, all
 other real analytic functions.

 For the proof, we require the following auxiliary consideration.

 Assume that the conditions of(7.4) are satisfied and choose x1 Ec 'x 1, x'2 E # 1x2.
 Then we claim that *f'(x) attains its maximum in the interval x1' < x ? x'2 either

 at x1 or at x'2 or at some standard point xo, x1 < xo < x2 (but, possibly, also
 elsewhere).

 Suppose that *f(x) attains its maximum neither at x1 nor at x'2 but at a point

 x, x1 < 5 < x'2. Let x0 be the standard part of x, xo = ?x. Suppose that xo < x1 (so
 that xo = ao). Depending on whether the first non-vanishing derivative of f'(x) at
 xo is either positive or negative, *f'(x) will be either strictly increasing or strictly
 decreasing in some interval xo < x < xo + h, where h is standard and positive.
 Since x and x1 belong to that interval, the latter case would involve *f '(x1) > *f '(x-),
 contrary to our choice of x. Accordingly, we have to assume that *f'(x) increases

 strictly for xo < x < xo + h. Now x2' cannot belong to that interval for then
 *f '(x2) > *f '(5), which is again impossible. It follows that x < xo + h < x2 and
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 *f'(xo + h) > f(x) which is also impossible. We therefore conclude that xo > x1
 and, by similar reasoning, xO < x2. The discussion of the variation of *f'(x) in the

 neighborhood of xo shows that we must exclude both xO < x and xo > x and so we
 conclude that x = xo.

 Thus we have shown than *f'(x) attains its maximum at x1' or at x'2 or at some

 standard point x'1 < xo < x'2 (although several of these cases may occur simul-
 taneously). Accordingly *f'(x) attains its maximum in the interval x1 < x < x2 in

 all cases at a point C' such that C = 42 E -L. By a similar argument (or, by apply-
 ing the conclusion to - f(x)) we find that *f'(x) attains its minimum in the same

 interval at a point C' such that Vl C' = e1 E PL. Passing from *R to "R, we then con-
 clude that P(f'(x)) attains its maximum and minimum in x1 < x < x2 at points Cl
 and C2 which belong to PL.

 By a well-known formula of the Integral Calculus, which can be transferred from

 R to *R, we have

 X2

 *fV'42)(X2 - xl) < f *f '(x)dx < *f '(Cl) (x2 -XI)
 X1

 i.e.,

 *fI(C(x'2 - x'l) < *f(x') - *f (x) ? *f'(4')(x -1

 We apply the mapping X to this chain of inequalities and obtain

 V VD()) (x2 - xl) < pf(x2) - pf(X1) ? V(f ( X))(2 - X 1)

 or, equivalently

 ( pf ()< x2) -pf(X 1f() )

 X2 -X1

 But this shows that (Pf(x2) - Pf(x)) /(x2 -x1)isintermediate between P(f'(2)) and
 P(f'(Ql)). Hence, by the intermediate value Theorem 6.3, there exists a 4 E -L which

 belongs to the closed interval with endpoint C, and C2 and, hence, belongs to
 xI <x <x2, such that

 Pf(X2) - -f(XI) -(fI(
 X2 -XI

 and this is the same as

 Pf(X2) - f(x) f (( d
 X2- XI dx x=?

 by (7.1). The proof of 7.4 is now complete.
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 8. Conclusion. As Laugwitz points out, his method for extending a function

 f(x) from R to L applies only in the infinitesimal neighborhood of a point at which
 f(x) is infinitely differentiable and hence, possesses at least a formal Taylor series.

 However, if we consider points in the infinitesimal neighborhood of the endpoints of

 the interval of definition a < x < b of f(x), e.g., x = a + a1tv1 + a2tv2 + ...,

 0 < v1 < v2 < * 5 al > 0, then we can still define Lf at x, provided f possesses an
 asymptotic expansion at x = a as x tends to a from the right. Similarly, if f(x) is

 defined in a semi-infinite interval, for x > a say, we can define Lf(x) for positive

 infinite x provided f(x) possesses an asymptotic expansion as x -+ + 00. In all of
 these cases, Lf(x) can again be obtained "automatically" as I> '(Pf(Dx)) (see (5.3)
 above). However, Pf(x) exists also in many cases where no asymptotic expansion as a
 generalized power series is available, e.g., Plog x exists for positive infinitesimal and
 infinite x. Conversely, we may investigate the asymptotic expansion of a function

 f(x) at a singular point (even when it contains logarithmic terms, as happens

 frequently in the theory of ordinary differential equations) by means of the function

 Pf(x). Going further in the direction of concrete applications, PR also provides us

 with a convenient framework for the discussion of matched asymptotic expansions

 for the solution of singular perturbation problems.

 This research was supported in part by the National Science Foundation Grant No. GP-18728.

 References

 1. N. Jacobson, Lectures in Abstract Algebra, vol. III, Princeton-Toronto-New-York-London,

 1964.

 2. D. Laugwitz, Eine nichtarchimedische Erweiterung angeordneter K6rper, Math. Nachr., 37
 (1968) 225-236.

 3. T. Levi-Civita, Sugli infiniti ed infinitesimi attuali quali elementi analitici (1892-1893), Opere

 matematiche, vol. 1, Bologna 1954, pp. 1-39.

 4. W. A. J. Luxemburg, What is Nonstandard Analysis, California Institute of Technology,

 1968, to be published.

 5. A. Ostrowski, Untersuchungen zur arithmetischen Theorie der K6rper, Math. Z., 39 (1935)

 269-404.

 6. A. Robinson, Non-standard Analysis, Studies in Logic and the Foundations of Mathematics,

 Amsterdam, 1966.

 7. B. L. v. der Waerden, Algebra, 5th edition, Berlin-Heidelberg-New York, 1966/1967.
 8. 0. Zariski and P. Samuel, Commutative Algebra, vol. 2, Princeton-Toronto-New-York-

 London, 1960.

 Yale University,
 September 1970.

This content downloaded from 137.120.89.235 on Mon, 18 Dec 2017 10:11:18 UTC
All use subject to http://about.jstor.org/terms


	Contents
	image 1
	image 2
	image 3
	image 4
	image 5
	image 6
	image 7
	image 8
	image 9
	image 10
	image 11
	image 12
	image 13
	image 14
	image 15
	image 16
	image 17
	image 18
	image 19
	image 20
	image 21
	image 22
	image 23

	Issue Table of Contents
	American Mathematical Monthly, Vol. 80, No. 6, Part 2. Papers in the Foundations of Mathematics (Jun. - Jul., 1973), pp. 1-109
	Front Matter [pp. 1-2]
	Some Aspects of the Theory of Models [pp. 3-37]
	What Is Nonstandard Analysis? [pp. 38-67]
	Recursive Functions and Hierarchies [pp. 68-86]
	Function Theory on Some Nonarchimedean Fields [pp. 87-109]
	Back Matter



