
Games and Economic Behavior 68 (2010) 155–179
Contents lists available at ScienceDirect

Games and Economic Behavior

www.elsevier.com/locate/geb

Lexicographic probability, conditional probability, and nonstandard
probability ✩

Joseph Y. Halpern

Dept. Computer Science, Cornell University, Ithaca, NY 14853, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 March 2008
Available online 24 April 2009

JEL classification:
C70
D80
D81
D82

The relationship between Popper spaces (conditional probability spaces that satisfy some re-
gularity conditions), lexicographic probability systems (LPS’s), and nonstandard probability
spaces (NPS’s) is considered. If countable additivity is assumed, Popper spaces and a
subclass of LPS’s are equivalent; without the assumption of countable additivity, the
equivalence no longer holds. If the state space is finite, LPS’s are equivalent to NPS’s.
However, if the state space is infinite, NPS’s are shown to be more general than LPS’s.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Probability is certainly the most commonly-used approach for representing uncertainty and conditioning the stan-
dard way of updating probabilities in the light of new information. Unfortunately, there is a well-known problem with
conditioning: conditioning on events of measure 0 is not defined. That makes it unclear how to proceed if an agent
learns something to which she initially assigned probability 0. Although consideration of events of measure 0 may
seem to be of little practical interest, it turns out to play a critical role in game theory, particularly in the analy-
sis of strategic reasoning in extensive-form games and in the analysis of weak dominance in normal-form games (see,
for example, Battigalli, 1996; Battigalli and Siniscalchi, 2002; Blume et al., 1991a, 1991b; Brandenburger et al., 2008;
Fudenberg and Tirole, 1991; Hammond, 1994, 1999; Kohlberg and Reny, 1997; Kreps and Wilson, 1982; Myerson,
1986; Selten, 1965, 1975). It also arises in the analysis of conditional statements by philosophers (see Adams, 1966;
McGee, 1994), and in dealing with nonmonotonicity in Artificial Intelligence (see, for example, Lehmann and Magidor, 1992).

There have been various attempts to deal with the problem of conditioning on events of measure 0. Perhaps the best
known involves conditional probability spaces (CPS’s). The idea, which goes back to Popper (1934, 1968) and De Finetti (1936),
is to take as primitive not probability, but conditional probability. If μ is a conditional probability measure on a space W ,
then μ(V | U ) may still be undefined for some pairs V and U , but it is also possible that μ(V | U ) is defined even if μ(U |
W ) = 0. A second approach, which goes back to at least Robinson (1973) and has been explored in the economics literature
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(Hammond, 1994, 1999), the AI literature (Lehmann and Magidor, 1992; Wilson, 1995), and the philosophy literature (see
McGee, 1994 and the references therein) is to consider nonstandard probability spaces (NPS’s), where there are infinitesimals
that can be used to model events that, intuitively, have infinitesimally small probability yet may still be learned or observed.

There is a third approach to this problem, which uses sequences of probability measures to represent uncertainty. The
most recent exemplar of this approach, which I focus on here, are the lexicographic probability systems (LPS’s) of Blume
et al., (1991a, 1991b) (BBD from now on). However, the idea of using a system of measures to represent uncertainty actually
was explored as far back as the 1950s by Rényi (1956) (see Section 3.4). A lexicographic probability system is a sequence
〈μ0,μ1, . . .〉 of probability measures. Intuitively, the first measure in the sequence, μ0, is the most important one, followed
by μ1, μ2, and so on. One way to understand LPS’s is in terms of NPS’s. Roughly speaking, the probability assigned to an
event U by a sequence such as 〈μ0,μ1〉 can be taken to be μ0(U ) + εμ1(U ), where ε is an infinitesimal. Thus, even if the
probability of U according to μ0 is 0, U still has a positive (although infinitesimal) probability if μ1(U ) > 0.

What is the precise relationship between these approaches? The relationship between LPS’s and CPS’s has been con-
sidered before. For example, Hammond (1994) shows that conditional probability spaces are equivalent to a subclass of
LPS’s called lexicographic conditional probability spaces (LCPS’s) if the state space is finite and it is possible to condition on
any nonempty set.1 As shown by Spohn (1986), Hammond’s result can be extended to arbitrary countably additive Popper
spaces, where a Popper space is a conditional probability space where the events on which conditioning is allowed satisfy
certain regularity conditions. As I show, this result depends critically on a number of assumptions. In particular, it does not
work without the assumption of countable additivity, it requires that we extend LCPS’s appropriately to the infinite case,
and it is sensitive to the choice of conditioning events. For example, if we consider CPS’s where the conditioning events can
be viewed as information sets, and so are not closed under supersets (this is essentially the case considered by Battigalli
and Siniscalchi (2002)), then the result no longer holds.

Turning to the relationship between LPS’s and NPS’s, I show that if the state space is finite, then LPS’s are in a sense
equivalent to NPS’s. More precisely, say that two measures of uncertainty ν1 and ν2 (each of which can be either an LPS
or an NPS) are equivalent, denoted ν1 ≈ ν2, if they cannot be distinguished by (real-valued) random variables; that is, for
all random variables X and Y , Eν1 (X) � Eν1 (Y ) iff Eν2 (X) � Eν2 (Y ) (where Eν(X) denotes the expected value of X with
respect to ν). To the extent that we are interested in these representations of uncertainty for decision making, then we
should not try to distinguish two representations that are equivalent. I show that, in finite spaces, there is a straightforward
bijection between ≈-equivalence classes of LPS’s and NPS’s. This equivalence breaks down if the state space is infinite; in
this case, NPS’s are strictly more general than LPS’s (whether or not countable additivity is assumed).

Finally, I consider the relationship between Popper spaces and NPS’s, and show that NPS’s are more general. (The theorem
I prove is a generalization of one proved by McGee (1994), but my interpretation of it is quite different; see Section 5.)

These results give some useful insight into independence of random variables. There have been a number of alternative
notions of independence considered in the literature of extended probability spaces (i.e., approaches that deal with the
problem of conditioning on sets of measure 0): BBD considered three; Kohlberg and Reny (1997) considered two others. It
turns out that these notions are perhaps best understood in the context of NPS’s; I describe and compare them here.

Many of the new results in this paper involve infinite spaces. Given that most games studied by game theorists are
finite, it is fair to ask whether these results have any significance for game theory. I believe they do. Even if the underlying
game is finite, the set of types is infinite. Epistemic characterizations of solution concepts often make use of complete type
spaces, which include every possible type of every player, where a type determines an (extended) probability over the
strategies and types of the other players; this must be an infinite space. For example, Battigalli and Siniscalchi (2002) use
a complete type space where the uncertainty is represented by cps’s to give an epistemic characterization of extensive-
form rationalizability and backward induction, while Brandenburger et al. (2008) use a complete type space where the
uncertainty is represented by LPS’s to get a characterization of weak dominance in normal-form games. As the results of
this paper show, the set of types depends to some extent on the notion of extended probability used. Similarly, a number of
characterizations of solution concepts depend on independence (see, for example, Battigalli, 1996; Kohlberg and Reny, 1997;
Battigalli and Siniscalchi, 1999). Again, the results of this paper show that these notions can be somewhat sensitive to
exactly how uncertainty is represented, even with a finite state space. While I do not present any new game-theoretic
results here, I believe that the characterizations I have provided may be useful both in terms of defending particular choices
of representation used and suggesting new solution concepts.

The remainder of the paper is organized as follows. In the next section, I review all the relevant definitions for the
three representations of uncertainty considered here. Section 3 considers the relationship between Popper spaces and LPS’s.
Section 4 considers the relationship between LPS’s and NPS’s. Finally, Section 5 considers the relationship between Pop-
per spaces and NPS’s. In Section 6, I consider what these results have to say about independence. I conclude with some
discussion in Section 7.

1 Despite this isomorphism; it is not clear that conditional probability spaces are equivalent to LPS’s. It depends on exactly what we mean by equivalence.
The same comment applies below where the word “equivalent” is used. See Section 7 for further discussion. I thank Geir Asheim for bringing this point to
my attention.
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2. Conditional, lexicographic, and nonstandard probability spaces

In this section I briefly review the three approaches to representing likelihood discussed in the introduction.

2.1. Popper spaces

A conditional probability measure takes pairs U , V of subsets as arguments; μ(V , U ) is generally written μ(V | U ) to stress
the conditioning aspects. The first argument comes from some algebra F of subsets of a space W ; if W is infinite, F is
often taken to be a σ -algebra. (Recall that an algebra of subsets of W is a set of subsets containing W and closed under
union and complementation. A σ -algebra is an algebra that is closed under union countable.) The second argument comes
from a set F ′ of conditioning events, that is, that is, events on which conditioning is allowed. One natural choice is to take
F ′ to be F − ∅. But it may be reasonable to consider other restrictions on F ′ . For example, Battigalli and Siniscalchi (2002)
take F ′ to consist of the information sets in a game, since they are interested only in agents who update their beliefs
conditional on getting some information. The question is what constraints, if any, should be placed on F ′ . For most of this
paper, I focus on Popper spaces (named after Karl Popper), defined next, where the set F ′ satisfies four arguably reasonable
requirements, but I occasionally consider other requirements (see Section 3.3).

Definition 2.1. A conditional probability space (cps) over (W , F ) is a tuple (W , F , F ′,μ) such that F is an algebra over W ,
F ′ is a set of subsets of W (not necessarily an algebra over W ) that does not contain ∅, and μ : F × F ′ → [0,1] satisfies
the following conditions:

CP1. μ(U | U ) = 1 if U ∈ F ′ .
CP2. μ(V 1 ∪ V 2 | U ) = μ(V 1 | U ) + μ(V 2 | U ) if V 1 ∩ V 2 = ∅, U ∈ F ′ , and V 1, V 2 ∈ F .
CP3. μ(V | U ) = μ(V | X) × μ(X | U ) if V ⊆ X ⊆ U , U , X ∈ F ′ , V ∈ F .

Note that it follows from CP1 and CP2 that μ(· | U ) is a probability measure on (W , F ) (and, in particular, that μ(∅ | U ) = 0)
for each U ∈ F ′ . A Popper space over (W , F ) is a conditional probability space (W , F , F ′,μ) that satisfies three additional
conditions: (a) F ′ ⊆ F , (b) F ′ is closed under supersets in F , in that if V ∈ F ′ , V ⊆ V ′ , and V ′ ∈ F , then V ′ ∈ F ′ , and
(c) if U ∈ F ′ and μ(V | U ) �= 0 then V ∩ U ∈ F ′ . If F is a σ -algebra and μ is countably additive (that is, if μ(

⋃
V i | U ) =∑∞

i=1 μ(V i | U ) if the V i ’s are pairwise disjoint elements of F and U ∈ F ′), then the Popper space is said to be countably
additive. Let Pop(W , F ) denote the set of Popper spaces over (W , F ). If F is a σ -algebra, I use a superscript c to denote
the restriction to countably additive Popper spaces, so Popc(W , F ) denotes the set of countably additive Popper spaces over
(W , F ). The probability measure μ in a Popper space is called a Popper measure.

The last regularity condition on F ′ required in a Popper space corresponds to the observation that for an unconditional
probability measure μ, if μ(V | U ) �= 0 then μ(V ∩ U ) �= 0, so conditioning on V ∩ U should be defined. Note that, since
this regularity condition depends on the Popper measure, it may well be the case that (W , F , F ′,μ) and (W , F , F ′, ν) are
both cps’s over (W , F ), but only the former is a Popper space over (W , F ).

Popper (1934, 1968) and De Finetti (1936) were the first to formally consider conditional probability as the basic notion,
although as Rényi (1964) points out, the idea of taking conditional probability as primitive seems to go back as far as Keynes
(1921). CP1–CP3 are essentially due to Rényi (1955). Van Fraassen (1976) defined what I have called Popper measures;
he called them Popper functions, reserving the name Popper measure for what I am calling a countably additive Popper
measure. Starting from the work of de Finetti, there has been a general study of coherent conditional probabilities. A coherent
conditional probability is essentially a cps that is not necessarily a Popper space, since it is defined on a set F × F ′ where
F ′ does not have to be a subset of F ; see, for example, Coletti and Scozzafava, 2002 and the references therein. Hammond
(1994) discusses the use of conditional probability spaces in philosophy and game theory, and provides an extensive list of
references.

2.2. Lexicographic probability spaces

Definition 2.2. A lexicographic probability space (LPS) (of length α) over (W , F ) is a tuple (W , F , �μ) where, as before, W is a
set of possible worlds and F is an algebra over W , and �μ is a sequence of finitely additive probability measures on (W , F )

indexed by ordinals < α. (Technically, �μ is a function from the ordinals less than α to probability measures on (W , F ).)
I typically write �μ as (μ0,μ1, . . .) or as (μβ : β < α). If F is a σ -algebra and each of the probability measures in �μ is
countably additive, then �μ is a countably additive LPS. Let LPS(W , F ) denote the set of LPS’s over (W , F ). Again, if F is a
σ -algebra, a superscript c is used to denote countable additivity, so LPSc(W , F ) denotes the set of countably additive LPS’s
over (W , F ). When (W , F ) are understood, I often refer to �μ as the LPS. I write �μ(U ) > 0 if μβ(U ) > 0 for some β .

There is a sense in which LPS(W , F ) can capture a richer set of preferences than Pop(W , F ), even if we restrict to finite
spaces W (so that countable additivity is not an issue). For example, suppose that W = {w1, w2}, μ0(w1) = μ0(w2) = 1/2,
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and μ1(w1) = 1. The LPS �μ = (μ0,μ1) can be thought of describing the situation where w1 is very slightly more likely
than w2. Thus, for example, if Xi is a bet that pays off 1 in state wi and 0 in state w3−i , then according to �μ, X1 should
be (slightly) preferred to X2, but for all r > 1, r X2 is preferred to X1. There is no CPS on {w1, w2} that leads to these
preferences

Note that, in this example, the support of μ2 is a subset of that of μ1. To obtain a bijection between LPS’s and CPS’s,
we cannot allow much overlap between the supports of the measures that make an LPS. What counts as “much overlap”
turns out to be a somewhat subtle. One way to formalize it was proposed by BBD. They defined a lexicographic conditional
probability space (LCPS) to be an LPS such that, roughly speaking, the probability measures in the sequence have disjoint
supports; more precisely, there exist sets Uβ ∈ F such that μβ(Uβ) = 1 and the sets Uβ are pairwise disjoint for β < α.
One motivation for considering disjoint sets is to consider an agent who has a sequence of hypotheses (h0,h1, . . .) regarding
how the world works. If the primary hypothesis h0 is discarded, then the agent judges events according to h1; if h1 is
discarded, then the agent uses h2, and so on. Associated with hypothesis hβ is the probability measure μβ . What would
cause hβ to be discarded is observing an event U such that μβ(U ) = 0. The set Uβ is the support of the hypothesis hβ . In
some cases, it seems reasonable to think of the supports of these hypotheses as disjoint. This leads to LCPS’s.

BBD considered only finite spaces. When we move to infinite spaces, requiring disjointness of the supports of hypotheses
may be too strong. Brandenburger et al. (2008) consider finite-length LPS’s �μ that satisfy the property that there exist sets
Uβ (not necessarily disjoint) such that μβ(Uβ) = 1 and μβ(Uγ ) = 0 for γ �= β . Call such an LPS an MSLPS (for mutually
singular LPS). Let a structured LPS (SLPS) be an LPS �μ such that there exist sets Uβ ∈ F such that μβ(Uβ) = 1 and μβ(Uγ ) = 0
for γ > β . Thus, in an SLPS, later hypotheses are given probability 0 according to the probability measure induced by earlier
hypotheses, but earlier hypotheses do not necessarily get probability 0 according the later hypotheses. (Spohn (1986) also
considered SLPS’s; he called them dimensionally well-ordered families of probability measures.) Clearly every LCPS is an MSLPS,
and every MSLPS is an SLPS. If α is countable and we require countable additivity (or if α is finite) then the notions are
easily seen to coincide. Given an SLPS �μ with associated sets Uβ,β < α, define U ′

β = Uβ − (
⋃

γ >β Uγ ). The sets U ′
β are

clearly pairwise disjoint elements of F , and μβ(U ′
β) = 1. However, in general, LCPS’s are a strict subset of MSLPS’s, and

MSLPS’s are a strict subsets of SLPS’s, as the following two examples show.

Example 2.3. Consider a well-ordering of the interval [0,1], that is, a bijection from [0,1] to an initial segment of the
ordinals. Suppose that this initial segment of the ordinals has length α. Let ([0,1], F , �μ) be an LPS of length α where F
consists of the Borel subsets of [0,1]. Let μ0 be the standard Borel measure on [0,1], and let μβ be the measure that gives
probability 1 to rβ , the βth real in the well-ordering. This clearly gives an SLPS, since we can take U0 = [0,1] and Uβ = {rβ}
for 0 < β < α; note that μα(Uβ) = 0 for β > α. However, this SLPS is not equivalent to any MSLPS (and hence not to any
LCPS); there is no set U ′

0 such that μ0(U ′
0) = 1 and U ′

0 is disjoint from rβ for all β with 0 < β < α.

Example 2.4. Suppose that W = [0,1] × [0,1]. Again, consider a well-ordering on [0,1]. Using the notation of Exam-
ple 2.3, define U0,β = rβ × [0,1] and U1,β = [0,1] × {rβ}. Define μi,β to be the Borel measure on Ui,β . Consider the LPS
(μ0,0,μ0,1, . . . ,μ1,0,μ1,1, . . .). Clearly this is an MSLPS, but not an LCPS.

The difference between LCPS’s, MSLPS’s, and SLPS’s does not arise in the work of BBD, since they consider only finite
sequences of measures. The restriction to finite sequences, in turn, is due to their restriction to finite sets W of possible
worlds. Clearly, if W is finite, then all LCPS’s over W must have length � |W |, since the measures in an LCPS have disjoint
supports. Here it will play a more significant role.

We can put an obvious lexicographic order <L on sequences (x0, x1, . . .) of numbers in [0,1] of length α: (x0, x1, . . .) <L
(y0, y1, . . .) if there exists β < α such that xβ < yβ and xγ = yγ for all γ < β . That is, we compare two sequences by
comparing their components at the first place they differ. (Even if α is infinite, because we are dealing with ordinals, there
will be a least ordinal at which the sequences differ if they differ at all.) This lexicographic order will be used to define
decision rules.

BBD define conditioning in LPS’s as follows. Given �μ and U ∈ F such that �μ(U ) > 0, let �μ|U = (μk0 (· | U ),μk1 (· | U ), . . .),
where (k0,k1, . . .) is the subsequence of all indices for which the probability of U is positive. Formally, k0 = min{k: μk(U ) >

0} and for an arbitrary ordinal β > 0, if μkγ has been defined for all γ < β and there exists a measure μδ in �μ such that
μδ(U ) > 0 and δ > kγ for all γ < β , then kβ = min{δ: μδ(U ) > 0, δ > kγ for all γ < β}. Note that �μ|U is undefined if
�μ(U ) = 0.

2.3. Nonstandard probability spaces

It is well known that there exist non-Archimedean fields—fields that include the real numbers as a subfield but also have
infinitesimals, numbers that are positive but still less than any positive real number. The smallest such non-Archimedean
field, commonly denoted R(ε), is the smallest field generated by adding to the reals a single infinitesimal ε .2 We can

2 The construction of R(ε) apparently goes back to Robinson (1973). It is reviewed by Hammond (1994, 1999) and Wilson (1995) (who calls R(ε) the
extended reals).
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further restrict to non-Archimedean fields that are elementary extensions of the standard reals: they agree with the standard
reals on all properties that can be expressed in a first-order language with a predicate N representing the natural numbers.
For most of this paper, I use only the following properties of non-Archimedean fields:

1. If R
∗ is a non-Archimedean field, then for all b ∈ R

∗ such that −r < b < r for some standard real r > 0, there is a unique
closest real number a such that |a − b| is an infinitesimal. (Formally, a is the inf of the set of real numbers that are at
least as large as b.) Let st(b) denote the closest standard real to b; st(b) is sometimes read “the standard part of b.”

2. If st(ε/ε′) = 0, then aε < ε′ for all positive standard real numbers a. (If aε were greater than ε ′ , then ε/ε′ would be
greater than 1/a, contradicting the assumption that st(ε/ε ′) = 0.)

Given a non-Archimedean field R
∗ , a nonstandard probability space (NPS) over (W , F ) (with range R

∗) is a tuple (W , F ,μ),
where W is a set of possible worlds, F is an algebra of subsets of W , and μ assigns to sets in F a nonnegative element of
R

∗ such that μ(W ) = 1 and μ(U ∪ V ) = μ(U ) + μ(V ) if U and V are disjoint.3

If W is infinite, we may also require that F be a σ -algebra and that μ be countably additive. (There are some subtleties
involved with countable additivity in nonstandard probability spaces; see Section 4.3.)

3. Relating Popper spaces to (S)LPS’s

In this section, I consider a mapping F S→P from SLPS’s over (W , F ) to Popper spaces over (W , F ), for each fixed W
and F , and show that, in many cases of interest, F S→P is a bijection. Given an SLPS (W , F , �μ) of length α, consider the
cps (W , F , F ′,μ) such that F ′ = ⋃

β<α{V ∈ F : μβ(V ) > 0}. For V ∈ F ′ , let βV be the smallest index such μβV (V ) > 0.
Define μ(U | V ) = μβV (U | V ). I leave it to the reader to check that (W , F , F ′,μ) is a Popper space.

There are many bijections between two spaces. Why is F S→P of interest? Suppose that F S→P (W , F , �μ) = (W , F , F ′,μ).
It is easy to check that the following two important properties hold:

1. F ′ consists precisely of those events for which conditioning in the LPS is defined; that is, F ′ = {U : �μ(U ) > 0}.
2. For U ∈ F ′ , μ(· | U ) = μ′(· | U ), where μ′ is the first probability measure in the sequence �μ|U . That is, the Popper

measure agrees with the most significant probability measure in the conditional LPS given U . Given that an LPS assigns
to an event U a sequence of numbers and a Popper measure assigns to U just a single number, this is clearly the best
single number to take.

It is clear that these two properties in fact characterize F S→P . Thus, F S→P preserves the events on which conditioning
is possible and the most significant term in the lexicographic probability.

3.1. The finite case

It is useful to separate the analysis of F S→P into two cases, depending on whether or not the state space is finite. I
consider the finite case first.

BBD claim without proof that F S→P is a bijection from LCPS’s to conditional probability spaces. They work in finite
spaces W (so that LCPS’s are equivalent to SLPS’s) and restrict attention to LPS’s where F = 2W and F ′ = 2W −{∅} (so that
conditioning is defined for all nonempty sets). Since F ′ = 2W −{∅}, the cps’s they consider are all Popper spaces. Hammond
(1994) provides a careful proof of this result, under the restrictions considered by BBD. I generalize Hammond’s result by
considering finite Popper spaces with arbitrary conditioning events. No new conceptual issues arise in doing this extension;
I include it here only to be able to contrast it with the other results.

Let SLPS(W , F ) denote the set of LPS’s over (W , F ); let SLPS(W , F , F ′) denote the set of LPS’s (W , F , �μ) such that
�μ(U ) > 0 for all U ∈ F ′ (i.e., μβ(U ) > 0 for some β); as usual, I use a superscript c to denote countable additivity, so, for
example, SLPSc(W , F ) denotes the set of countably additive SLPS’s over (W , F ). Let Pop(W , F , F ′) denote the set of Popper
spaces of the form (W , F , F ′) and let Popc(W , F , F ′) denote the set of Popper spaces of the form (W , F , F ′,μ) where μ
is countably additive.

Theorem 3.1. If W is finite, then F S→P is a bijection from SLPS(W , F , F ′) to Pop(W , F , F ′).

Proof. It is immediate from the definition that if (W , F , �μ) ∈ SLPS(W , F , F ′), then F S→P (W , F , �μ) ∈ Pop(W , F , F ′). It is
also straightforward to show that F S→P is an injection (see Appendix A for details). The work comes in showing that F S→P

is a surjection (or, equivalently, in constructing an inverse to F S→P ). I sketch the main ideas of the argument here, leaving
details to Appendix A.

3 Note that, unlike Hammond (1994, 1999), I do not restrict the range of probability measures to consist of ratios of polynomials in ε with nonnegative
coefficients.
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Given μ ∈ Pop(W , F , F ′), the idea is to choose k � |W | and k disjoint sets U0, . . . , Uk ∈ F ′ appropriately such that
μ j = μ | U j for j = 0, . . . ,k (i.e., μ j(V ) = μ(V | U j)) and F S→P (W , F , �μ) = μ. Since the sets U0, . . . , Uk are disjoint, �μ
must be an SLPS. The difficulty lies in choosing U0, . . . , Uk so that �μ(U ) > 0 iff U ∈ F ′ . This is done as follows. Let U0 be
the smallest set U ∈ F such that μ(U ) = 1. Since W is finite, there is such a smallest set; it is simply the intersection of all
sets U such that μ(U | W ) = 1. Since μ(U0 | W ) > 0, it follows that U0 ∈ F ′ . If U 0 /∈ F ′ , then (because F ′ is closed under
supersets in F ), no subset of U 0 is in F ′ . If U 0 ∈ F ′ , let U1 be the smallest set in F such that μ(U1 | U 0) = 1. Note that
U1 ⊆ U 0 and that U1 ∈ F ′ . Continuing in this way, it is clear that there exists a k � 0 and a sequence of pairwise disjoint
sets U0, U1, . . . , Uk such that (1) Ui ∈ F ′ for i = 0, . . . ,k, (2) for i < k, U0 ∪ . . . ∪ Ui ∈ F ′ and Ui+1 is the smallest subset
of F such that μ(Ui+1 | U0 ∪ . . . ∪ Ui) = 1, and (3) U0 ∪ . . . ∪ Uk /∈ F ′ . Condition (2) guarantees that Ui+1 is a subset of
U0 ∪ . . . ∪ Ui , so the Ui ’s are pairwise disjoint. Define the LPS �μ = (μ1, . . . ,μk) by taking μi(V ) = μ(V | Ui). Clearly the
support of μi is Ui , so this is an LCPS (and hence an SLPS). �
Corollary 3.2. If W is finite, then F S→P is a bijection from SLPS(W , F ) to Pop(W , F ).

3.2. The infinite case

The case where the state space W is infinite is not considered by either BBD or Hammond. It presents some interesting
subtleties.

It is easy to see that F S→P is an injection from SLPS’s to Popper spaces. However, as the following two examples show,
if we do not require countable additivity, then it is not a bijection.

Example 3.3. (This example is essentially due to Robert Stalnaker (private communication, 2000).) Let W = N, the natural
numbers, let F consist of the finite and cofinite subsets of N (recall that a cofinite set is the complement of a finite
set), and let F ′ = F − {∅}. If U is cofinite, take μ1(V | U ) to be 1 if V is cofinite and 0 if V is finite. If U is finite, define
μ1(V | U ) = |V ∩U |/|U |. I leave it to the reader to check that (N, F , F ′,μ1) is a Popper space. Note that μ1 is not countably
additive (since μ1({i} | N) = 0 for all i, although μ1(N | N) = 1). Suppose that there were some LPS (N, F , �μ) which was
mapped by F S→P to this Popper space. Then it is easy to check that if μi is the first measure in �μ such that μi(U ) > 0
for some finite set U , then μi(U ′) > 0 for all nonempty finite sets U ′ . To see this, note that for any nonempty finite set U ′ ,
since μi(U ) > 0, it follows that μi(U ∪ U ′) > 0. Since U ∪ U ′ is finite, it must be the case that μi is the first measure in �μ
such that μi(U ∪ U ′) > 0. Thus, by definition, μ1(U ′ | U ∪ U ′) = μi(U ′ | U ∪ U ′). Since μ1(U ′ | U ∪ U ′) > 0, it follows that
μi(U ′) > 0. Thus, μi(U ′) > 0 for all nonempty finite sets U ′ .

It is also easy to see that μi(U ) must be proportional to |U | for all finite sets U . To show this, it clearly suffices to show
that μi(n) = μi(0) for all n ∈ N. But this is immediate from the observation that

μi
({0} | {0,n}) = μ1({0} | {0,n}) = ∣∣{0}∣∣/∣∣{0,n}∣∣ = 1

2
.

But there is no probability measure μi on the natural numbers such that μi(n) = μi(0) > 0 for all n � 0. For if μi(0) > 1/N ,
then μi({0, . . . , N − 1}) > 1, a contradiction. (See Example 4.8 for further discussion of this setup.)

Example 3.4. Again, let W = N, let F consist of the finite and cofinite subsets of N, and let F ′ = F − {∅}. As with μ1, if U
is cofinite, take μ2(V | U ) to be 1 if V is cofinite and 0 if V is finite. However, now, if U is finite, define μ2(V | U ) = 1 if
max(V ∩ U ) = max U , and μ2(V | U ) = 0 otherwise. Intuitively, if n > n′ , then n is infinitely more probable than n′ according
to μ2. Again, I leave it to the reader to check that (N, F , F ′,μ2) is a Popper space. Suppose there were some LPS (N, F , �μ)

which was mapped by F S→P to this Popper space. Then it is easy to check that if μn is the first measure in �μ such that
μn({n}) > 0, then μn comes before μn′ in �μ if n > n′ . However, since �μ is well founded, this is impossible.

As the following theorem, originally proved by Spohn (1986), shows, there are no such counterexamples if we restrict to
countably additive SLPS’s and countably additive Popper spaces.

Theorem 3.5. (See Spohn, 1986.) For all W , the map F S→P is a bijection from SLPSc(W , F , F ′) to Popc(W , F , F ′).

Proof. Again, the difficulty comes in showing that F S→P is onto. Given a Popper space (W , F , F ′,μ), I again construct sets
U0, U1, . . . and an LPS �μ such that μβ(V ) = μ(V | Uβ), and show that F S→P (W , F , �μ) = (W , F , F ′,μ). However, now a
completely different construction is required; the earlier inductive construction of the sequence U0, . . . , Uk no longer works.
The problem already arises in the construction of U0. There may no longer be a smallest set U0 such that μ(U0) = 1.
Consider, for example, the interval [0,1] with Borel measure. There is clearly no smallest subset U of [0,1] such that
μ(U ) = 1. The details can be found in Appendix A. �
Corollary 3.6. For all W , the map F S→P is a bijection from SLPSc(W , F ) to Popc(W , F ).



J.Y. Halpern / Games and Economic Behavior 68 (2010) 155–179 161
It is important in Corollary 3.6 that we consider SLPS’s and not MSLPS’s or LCPS’s. F S→P is in fact not a bijection from
MSLPS’s or LCPS’s to Popper spaces.

Example 3.7. Consider the Popper space ([0,1], F , F ′,μ) which is the image under F S→P of the SLPS constructed in Exam-
ple 2.3. It is easy to see that this Popper space cannot be the image under F S→P of some MSPLS (and hence not of some
LCPS either).

3.3. Treelike CPS’s

One of the requirements in a Popper space is that F ′ be closed under supersets in F . If we think of F ′ as consisting of
all sets on which conditioning is possible, this makes sense; if we can condition on a set U , we should be able to consider
on a superset V of U . But if we think of F ′ as representing all the possible evidence that can be obtained (and thus, the set
of events on which an agent must be able to condition, so as to update her beliefs), there is no reason that F ′ should be
closed under supersets; nor, for that matter, is it necessarily the case that if U ∈ F ′ and μ(V | U ) �= 0, then V ∩ U ∈ F ′ . In
general, a cps where F ′ does not have these properties cannot be represented by an LPS, as the following example shows.

Example 3.8. Let W = {w1, w2, w3, w4}, let F consist of all subsets of W , and let F ′ consist of all the 2-element subsets
of W . Clearly F ′ is not closed under supersets. Define μ on F × F ′ such that μ(w1 | {w1, w3}) = μ(w4 | {w2, w4}) = 1/3,
and μ(w1 | {w1, w2}) = μ(w4 | {w3, w4}) = 1/2, and CP1 and CP2 hold. This is easily seen to determine μ. Moreover,
μ vaciously satisfies CP3, since there do not exist distinct sets U and X in F ′ such that U ⊆ X . It is easy to show that there
is no unconditional probability μ∗ on W such that μ∗(U | V ) = μ(U | V ) for all pairs (U , V ) ∈ F × F ′ such that μ∗(V ) > 0
(where, for μ∗ , the conditional probability is defined in the standard way).4 It easily follows that there is no LPS �μ such
that �μ(U | V ) = μ(U | V ) for all (U , V ) ∈ F × F ′ (since otherwise μ0 would agree with μ on all pairs (U , V ) ∈ F × F ′ such
that μ(V ) > 0). Had F ′ been closed under supersets, it would have included W . It is easy to see that it is impossible to
extend μ to F × (F ′ ∪ {W }) so that CP3 holds.

In the game-theory literature, Battigalli and Siniscalchi (2002) use conditional probability measures to model players’
beliefs about other players’ strategies in extensive-form games where agents have perfect recall. The conditioning events
are essentially information sets; which can be thought of as representing the possible evidence that an agent can obtain
in a game. Thus, the cps’s they consider are not necessarily Popper spaces, for the reasons described above. Nevertheless,
the conditioning events considered by Battigalli and Sinischalchi satisfy certain properties that prevent an analogue of
Example 3.8 from holding. I now make this precise.

Formally, I assume that there is a one-to-one correspondence between the sets in F ′ and the information sets of some
fixed player i. For each set U ∈ F ′ , there is a unique information set IU for player i such that U consists of all the strategy
profiles that reach IU . With this identification, it is immediate that we can organize the sets in F ′ into a forest (i.e.,
a collection of trees), with the same “reachability” structure as that of the information sets in the game tree. The topmost
sets in the forest are the ones corresponding to the topmost information sets for player i in the game tree. There may be
several such topmost information sets if nature or some player j other than i makes the first move in the game. (That is
why we have a forest, rather than a tree.) The immediate successors of a set U are the sets of strategy profiles corresponding
to information sets for player i reached immediately after IU . Because agents have perfect recall, the conditioning events F ′
have the following properties:

T1. F ′ is countable.
T2. The elements of F ′ can be organized as a forest (i.e., a collection of trees) where, for each U ∈ F ′ , if there is an

edge from U to some U ′ ∈ F ′ , then U ′ ⊆ U , all the immediate successors of U are disjoint, and U is the union of its
immediate successors.

T3. The topmost nodes in each tree of the forest form a partition of W .

Say that a set F ′ is treelike if it satisfies T1–T3. It follows from T2 and T3 that, for any sets U and U ′ in a treelike set F ′ ,
either U ⊆ U ′ (if U is a descendant of U ′ in some tree), U ′ ⊆ U (if U ′ is a descendant of U ), or U and U ′ are disjoint (if
neither is a descendant of the other). If F ′ is treelike, let T c(W , F , F ′) consist of all countably additive cps’s defined on
F × F ′ . I abuse notation in the next result, viewing F S→P as a mapping from SLPSc(W , F , F ′) to T c(W , F , F ′).

Proposition 3.9. The map F S→P is a surjection from SLPSc(W , F , F ′) onto T c(W , F , F ′).

Since F ′ is countable, every SLPS in SLPSc(W , F , F ′) must have at most countable length. Thus, there is no distinction
between SLPS’s, LCPS’s, and MSPLS’s in this case. (Indeed, in the proof of Proposition 3.9, the LPS constructed to demonstrate

4 This example is closely related to examples of conditional probabilities for which there is no common prior; see, for example, Halpern (2002, Exam-
ple 2.2).
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the surjection is an LCPS.) Note that we cannot hope to get a bijection here, even if W is finite. For example, suppose that
W = {w1, w2}, F = 2W , and F ′ = {{w1}, {w2}}. F ′ is clearly treelike, and there is a unique cps μ on (W , F , F ′). F S→P

maps every SLPS in SLPS(W , F , F ′) to μ, but is clearly not a bijection. (This example also shows that we do not get a
bijection by considering MSLPS’s or LCPS’s either.)

3.4. Related work

It is interesting to contrast these results to those of Rényi (1956) and Van Fraassen (1976). Rényi considers what he calls
dimensionally ordered systems. A dimensionally ordered system over (W , F ) has the form (W , F , F ′, {μi: i ∈ I}), where F
is an algebra of subsets of W , F ′ is a subset of F closed under finite unions (but not necessarily closed under supersets
in F ), I is a totally ordered set (but not necessarily well-founded, so it may not, for example, have a first element) and μi

is a measure on (W , F ) (not necessarily a probability measure) such that

• for each U ∈ F ′ , there is some i ∈ I such that 0 < μi(U ) < ∞ (note that the measure of a set may, in general, be ∞),
• if μi(U ) < ∞ and j < i, then μ j(U ) = 0.

Note that it follows from these conditions that for each U ∈ F ′ , there is exactly one i ∈ I such that 0 < μi(U ) < ∞.
There is an obvious analogue of the map F S→P mapping dimensionally ordered systems to cps’s. Namely, let F D→C map

the dimensionally ordered system (W , F , F ′, {μi: i ∈ I}) to the cps (W , F , F ′,μ), where μ(V | U ) = μi(V | U ), where i
is the unique element of I such that 0 < μi(U ) < ∞. Rényi shows that F D→C is a bijection from dimensionally ordered
systems to cps’s where the set F ′ is closed under finite unions. (Császár, 1955 extends this result to cases where the set
F ′ is not necessarily closed under finite unions.) Rényi assumes that all measures involved are countably additive and that
F is a σ -algebra, but these are inessential assumptions. That is, his proof goes through without change if F is an algebra
and the measures are additive; all that happens is that the resulting conditional probability measure is additive rather than
σ -additive.

It is critical in Rényi’s framework that the μi ’s are arbitrary measures, and not just probability measures. His result does
not hold if the μi ’s are required to be probability measures. In the case of finitely additive measures, the Popper space
constructed in Example 3.3 already shows why. It corresponds to a dimensionally ordered space (μ1,μ2) where μ1(U ) is
1 if U is cofinite and 0 if U is finite and μ2(U ) = |U | (i.e., the measure of a set is its cardinality). It cannot be captured
by a dimensionally ordered space where all the elements are probability measures, for the same reason that it is not the
image of an SLPS under F S→P . (Rényi, 1956 actually provides a general characterization of when the μi ’s can be taken to
be (countably additive) probability measures.) Another example is provided by the Popper space considered in Example 3.4.
This corresponds to the dimensionally ordered system {μβ : β ∈ N ∪ {∞}}, where

μn(U ) =
{0 if max(U ) < n,

1 if max(U ) = n,

∞ if max(U ) > n,

where max(U ) is taken to be ∞ if U is cofinite.
Krauss (1968) restricts to Popper algebras of the form F × (F − {∅}); this allows him to simplify and generalize Rényi’s

analysis. Interestingly, he also proves a representation theorem in the spirit of Rényi’s that involves nonstandard probability.
Van Fraassen (1976) proves a result whose assumptions are somewhat closer to Theorem 3.5. Van Fraassen considers

what he calls ordinal families of probability measures. An ordinal family over (W , F ) is a sequence of the form {(Wβ, Fβ,μβ):
β < α} such that

• ⋃
β<α Wβ = W ;

• Fβ is an algebra over Wβ ;
• μβ is a probability measure with domain Fβ ;
• ⋃

β<α Fβ = F ;
• if U ∈ F and V ∈ Fβ , then U ∩ V ∈ Fβ ;
• if U ∈ F , U ∩ V ∈ Fβ , and μβ(U ∩ V ) > 0, then there exists γ such that U ∈ Fγ and μγ (U ) > 0.

Given an ordinal family {(Wβ, Fβ,μβ): β < α} over (W , F ), consider the map F O→C which associates with it the
cps (W , F , F ′,μ), where F ′ = {U ∈ F : μγ (U ) > 0 for some γ < α} and μ(V | U ) = μβ(V | U ), where β is the smallest
ordinal such that U ∈ Fβ and μβ(U ) > 0. Van Fraassen shows that F O→C is a bijection from ordinal families over (W , F ) to
Popper spaces over (W , F ). Again, for van Fraassen, countable additivity does not play a significant role. If F is a σ -algebra,
a countably additive ordinal family over (W , F ) is defined just as an ordinal family, except that now Fβ is a σ -algebra over
Wβ for all β < α, μα is a countably additive probability measure, and F is the least σ -algebra containing

⋃
β<α Fβ (since⋃

β<α Fβ is not in general a σ -algebra). The same map F O→C is also a bijection from countably additive ordinal families to
countably additive Popper spaces.
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Spohn’s result, Theorem 3.5, can be viewed as a strengthening of van Fraassen’s result in the countably additive case,
since for Theorem 3.5 all the Fβ ’s are required to be identical. This is a nontrivial requirement. The fact that it cannot be
met in the case that W is infinite and the measures are not countably additive is an indication of this.

It is worth seeing how van Fraassen’s approach handles the finitely additive examples which do not correspond to SLPS’s.
The Popper space in Example 3.3 corresponds to the ordinal family {(Wn, Fn,μn): n � ω} where, for n < ω, Wn = {1, . . . ,n},
Fn consists of all subsets of Wn , and μn is the uniform measure, while Wω = N, Fω consists of the finite and cofinite
subsets of N, and μω(U ) is 1 if U is cofinite and 0 if U is finite. It is easy to check that this ordinal family has the desired
properties. The Popper space in Example 3.4 is represented in a similar way, using the ordinal family {(Wn, Fn,μ′

n): n � ω},
where μ′

n(U ) is 1 if n ∈ U and 0 otherwise, while μ′
ω = μω . I leave it to the reader to see that this family has the desired

properties. The key point to observe here is the leverage obtained by allowing each probability measure to have a different
domain.

4. Relating LPS’s to NPS’s

In this section, I show that LPS’s and NPS’s are isomorphic in a strong sense. Again, I separate the results for the finite
case and the infinite case.

4.1. The finite case

Consider an LPS of the form (μ1,μ2,μ3). Roughly speaking, the corresponding NPS should be (1 − ε − ε2)μ1 + εμ2 +
ε2μ3, where ε is some infinitesimal. That means that μ2 gets infinitesimal weight relative to μ1 and μ3 gets infinitesimal
weight relative to μ2. But which infinitesimal ε should be chosen? Intuitively, it should not matter. No matter which
infinitesimal is chosen, the resulting NPS should be equivalent to the original LPS. I now make this intuition precise.

Suppose that we want to use an LPS or an NPS to compute which of two bounded, real-valued random variables has
higher expected value. The intended application here is decision making, where the random variables can be thought of as
the utilities corresponding to two actions; the one with higher expected utility is preferred. The idea is that two measures
of uncertainty (each of which can be an LPS or an NPS) are equivalent if the preference order they place on (real-valued)
random variables (according to their expected value) is the same. I consider only random variables with countable range.
This restriction both makes the exposition simpler and avoids having to define, for example, integration with respect to
an NPS. Note that, given an LPS �μ, the expected value of a random variable X is

∑
x x �μ(X = x), where �μ(X = x) is a

sequence of probability values and the multiplication and addition are pointwise. Thus, the expected value is a sequence;
these sequences can be compared using the lexicographic order <L defined in Section 2.2. If ν is either an LPS or NPS, then
let Eν(X) denote the expected value of random variable X according to ν .

Definition 4.1. If each of ν1 and ν2 is either an NPS over (W , F ) or an LPS over (W , F ), then ν1 is equivalent to ν2, denoted
ν1 ≈ ν2, if, for all real-valued random variables X and Y measurable with respect to F , Eν1 (X) � Eν1 (Y ) iff Eν2 (X) � Eν2 (Y ).
(If X has countable range, which is the only case I consider here, then X is measurable with respect to F iff {w: X(w) =
x} ∈ F for all x in the range of X .)5

This notion of equivalence satisfies analogues of the two key properties of the map F S→P considered at the beginning
of Section 3.

Proposition 4.2. If ν ∈ NPS(W , F ), �μ ∈ LPS(W , F ), and ν ≈ �μ, then ν(U ) > 0 iff �μ(U ) > �0. Moreover, if ν(U ) > 0, then st(ν(V |
U )) = μ j(V | U ), where μ j is the first probability measure in �μ such that μ j(U ) > 0.

As the next result shows, for SLPS’s, the ≈-equivalence classes are singletons, even if the set of worlds is infinite. (This
is not true for LPS’s in general. For example, (μ,μ) ≈ (μ).) This can be viewed as providing more motivation for the use of
SLPS’s.

Proposition 4.3. If �μ, �μ′ ∈ SLPS(W , F ), then �μ ≈ �μ′ iff �μ = �μ′ .

The next result justifies restricting to finite LPS’s if the state space is finite. Given an algebra F , let Basic(F ) consist
of the basic sets in F , that is, the nonempty sets F that themselves contain no nonempty subsets in F . Clearly the sets

5 As pointed out by Adam Brandenburger and Eddie Dekel, this notion of equivalence is essentially the same as one implicitly used by BBD. They work
with preference orders on Anscombe–Aumann acts (Anscombe and Aumann, 1963), that is, functions from states to probability measures on prizes. Fix a
utility function u on prizes. Then take ν1 ∼u ν2 if the preference order on acts generated by ν1 and u is the same as that generated by ν2 and u. It is not
hard to show that this notion of equivalence is independent of the choice of utility function; if u and u′ are two utility functions on prizes, then ν1 ∼u ν2

iff ν1 ∼u′ ν2. Moreover, ν1 ∼u ν2 iff ν1 ≈ ν2. The advantage of the notion of equivalence used here is that it is defined without the overhead of preference
orders on acts.
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in Basic(F ) are disjoint, so that |Basic(F )| � |W |. If all sets are measurable, then Basic(F ) consists of the singleton subsets
of W . If W is finite, it is easy to see that all sets in F are finite unions of the sets in Basic(F ).

Proposition 4.4. If W is finite, then every LPS over (W , F ) is equivalent to an LPS of length at most |Basic(F )|.

I can now define the bijection that relates NPS’s and LPS’s. Given (W , F ), let LPS(W , F )/ ≈ be the equivalence classes of
≈-equivalent LPS’s over (W , F ); similarly, let NPS(W , F )/ ≈ be the equivalence classes of ≈-equivalent NPS’s over (W , F ).
Note that in NPS(W , F )/ ≈, it is possible that different nonstandard probability measures could have different ranges. For
this section, without loss of generality, I could also fix the range of all NPS’s to be the nonstandard model R(ε) discussed
in Section 2.3. However, in the infinite case, it is not possible to restrict to a single nonstandard model, so I do not do so
here either, for uniformity.

Now define the mapping F L→N from LPS(W , F )/ ≈ to NPS(W , F )/ ≈ pretty much as suggested at the beginning of
this subsection: if [ �μ] is an equivalence class of LPS’s, then choose a representative �μ′ ∈ [ �μ] with finite length. Fix an
infinitesimal ε . Suppose that �μ′ = (μ0, . . . ,μk). Let F L→N ([ �μ]) = [(1 − ε − · · · − εk)μ0 + εμ1 + · · · + εkμk].

Theorem 4.5. If W is finite, then F L→N is a bijection from LPS(W , F )/ ≈ to NPS(W , F )/ ≈ that preserves equivalence (that is, each
NPS in F L→N ([ �μ]) is equivalent to �μ).

Proof. It is easy to check that if �μ = (μ0, . . . ,μk), then �μ ≈ (1 − ε − · · · − εk)μ0 + εμ1 + · · · + εkμk (see Lemma A.7
in Appendix A for a formal proof). It follows that F L→N is an injection from LPS(W , F )/ ≈ to NPS(W , F )/ ≈. To show
that F L→N is a surjection, we must essentially construct an inverse map; that is, given an NPS (W , F , ν) where W is
finite, we must find an LPS �μ such that �μ ≈ ν . The idea is to find a finite collection μ0, . . . ,μk of (standard) probability
measures, where k � |W |, and nonnegative nonstandard reals ε0, . . . , εk such that st(εi+1/εi) = 0 and ν = ε0μ0 +· · ·+εkμk .
A straightforward argument then shows that ν ≈ �μ and F L→N ([ �μ]) = [ν]. I leave details to Appendix A. �

BBD (1991a) also relate nonstandard probability measures and LPS’s under the assumption that the state space is finite,
but there are some significant technical differences between the way they relate them and the approach taken here. BBD
prove representation theorems essentially showing that a preference order on lotteries can be represented by a standard
utility function on lotteries and an LPS iff it can be represented by a standard utility function on lotteries and an NPS. Thus,
they show that NPS’s and LPS’s are equiexpressive in terms of representing preference orders on lotteries. The difference
between BBD’s result and Theorem 4.5 is essentially a matter of quantification. BBD’s result can be viewed as showing that,
given an LPS, for each utility function on lotteries, there is an NPS that generates the same preference order on lotteries
for that particular utility function. In principle, the NPS might depend on the utility function. More precisely, for a fixed
LPS �μ, all that follows from their result is that for each utility function u, there is an NPS ν such that ( �μ, u) and (ν, u)

generate the same preference order on lotteries. Theorem 4.5 says that, given �μ, there is an NPS ν such that ( �μ, u) and
(ν, u) generate the same preference on lotteries for all utility functions u.

4.2. The infinite case

An LPS over an infinite state space W may not be equivalent to any finite LPS. However, ideas analogous to those used
to prove Proposition 4.4 can be used to provide a bound on the length of the minimal-length LPS’s in an equivalence class.

Proposition 4.6. Every LPS over (W , F ) is equivalent to an LPS over (W , F ) of length at most |F |.

The first step in relating LPS’s to NPS’s is to show that, just as in the finite case, for every LPS (μβ : β < α) of length α,
there is an equivalent NPS ν . The idea will be to set ν = (1 − ∑

0<β<α εnβ ) + ∑
0<β<α εnβ μβ . In the finite case, we could

take nβ = β . This worked because each β was finite, and the field R(ε) includes ε j for each integer j. But now, since α
may be greater than ω, we cannot just take nβ = β . To get this idea to work in the infinite setting, I consider a nonstandard
model of the integers, which includes an “integer” corresponding to all the ordinals less than α. I then construct a field that
includes εnα even for these nonstandard integers nα .

A nonstandard model of the integers is a model that contains the integers and satisfies every property of the integers
expressible in first-order logic. It follows easily from the compactness theorem of first-order logic (Enderton, 1972) that,
given an ordinal α, there exists a nonstandard model Iα of the integers Iα that includes elements nβ , β < α, such that
n j = j for j < ω and nβ < nβ ′ if β < β ′ . (Note that since Iα satisfies all the properties of the integers, it follows that
if nβ < nβ ′ , then nβ ′ − nβ � 1, a fact that will be useful later.) The compactness theorem says that, given a collection
of formulas, if each finite subset has a model, then so does the whole set. Consider a language with a function + and
constant symbols for each integer, together with constants nβ , β < α. Consider the collection of first-order formulas in this
language consisting of all the formulas true of the integers, together with the formulas ni = i for i < ω and nβ < nβ ′ , for all
β < β ′ < α. Clearly any finite subset of this set has a model—namely, the integers. Thus, by compactness, so does the full
set. Thus, for each ordinal α, there is a model Iα with the required properties.
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Given α, I now construct a field R(Iα) that includes εn for each “integer” n ∈ Iα . To explain the construction, it is best
to first consider R(ε) in a little more detail. Since R(ε) is a field, once it includes ε , it must include p(ε), where p is
a polynomial with real coefficients. To ensure the every nonzero element of R(ε) has an inverse, we need not just finite
polynomials in ε , but infinite polynomials in ε . The inverse of a polynomial in ε can then be computer using standard
“formal” division of polynomials. Moreover, the leading coefficient of the polynomial can be negative. Thus, the inverse of
ε3 is, not surprisingly, ε−3; the inverse of 1 − ε is 1 + ε + ε2 + · · · .

The field R(Iα) also includes polynomials in ε , but now the exponents are not just integers, but elements of Iα . Since
a field is closed under multiplication, if it contains εn1 and εn2 , it must also include their product. Since Iα satisfies all
the properties of the integers, if it includes n1 and n2, it also includes an element n1 + n2, and we can take εn1 × εn2 =
εn1+n2 . Formally, let R(Iα) be the non-Archimedean model defined as follows: R(Iα) consists of all polynomials of the form∑

n∈ J rnε
n , where rn is a standard real, ε is an infinitesimal, and J is a well-founded subset of Iα . (Recall that a set is well

founded if it has no infinite descending sequence; thus, the set of integers is not well founded, since · · · − 3 < −2 < −1 is
an infinite descending sequence. The reason I require well foundedness will be clear shortly.) We can identify the standard
real r with the polynomial rε0.

The polynomials in R(Iα) can be added and multiplied using the standard rules for addition and multiplication of
polynomials. It is easy to check that the result of adding or multiplying two polynomials is another polynomial in R(Iα). In
particular, if p1 and p2 are two polynomials, N1 is the set of exponents of p1, and N2 is the set of exponents of p2, then
the exponents of p1 + p2 lie in N1 ∪ N2, while the exponents of p1 p2 lie in the set N3 = {n1 + n2: n1 ∈ N1,n2 ∈ N2}. Both
N1 ∪ N2 and N3 are easily seen to be well founded if N1 and N2 are. Moreover, for each expression n1 + n2 ∈ N3, it follows
from the well-foundedness of N1 and N2 that there are only finitely many pairs (n,n′) ∈ N1 × N2 such that n +n′ = n1 +n2,
so the coefficient of εn1+n2 in p1 p2 is well defined. Finally, each polynomial (other than 0) has an inverse that can be
computed using standard “formal” division of polynomials; I leave the details to the reader. This step is where the well
foundedness comes in. The formal division process cannot be applied to a polynomial with coefficients that are not well
founded, such as · · · + ε−3 + ε−2 + ε−1. An element of R(Iα) is positive if its leading coefficient is positive. Define an order
� on R(Iα) by taking a � b if b − a is positive. With these definitions, R(Iα) is a non-Archimedean field.

Given (W , F ), let α be the minimal ordinal whose cardinality is greater than or equal to |F |. By construction, Iα

has elements nβ for all β < α such that ni = i for i < ω and nβ < nβ ′ if β < β ′ < α. I now define a map F L→N from
LPS(W , F )/ ≈ to NPS(W , F )/ ≈ just as suggested earlier. In more detail, given an equivalence class [ �μ] ∈ LPS(W , F ), by
Proposition 4.6, there exists �μ′ ∈ [ �μ] such that �μ′ has length α′ � α. Let ν = (1 − ∑

0<β<α εnβ )μ0 + ∑
0<β<α εnβ μ

′
β . By

definition,
∑

0<β<α εnβ ∈ R(Iα) (the set of exponents is well ordered since the ordinals are well ordered), hence so is
(1 − ∑

0<β<α εnβ ). The elements εnβ for β � α are also all in R(Iα). It easily follows that ν is nonstandard probability

measure over the field R(Iα). As observed earlier, if β ′ < β , then β − β ′ � 1, so εn′
β is infinitesimally smaller than εnβ .

Arguments essentially identical to those of Lemma A.7 in Appendix A can be used to show that ν ≈ �μ′ . Define F L→N [ �μ] =
[ν]. The following result is immediate.

Theorem 4.7. F L→N is an injection from LPS(W , F )/ ≈ to NPS(W , F )/ ≈ that preserves equivalence.

What about the converse? Is it the case that for every NPS there is an equivalent LPS? The technique for finding an
equivalent LPS used in the finite case fails. There is no obvious way to find a well-ordered sequence of standard probability
measures μ0,μ1, . . . and a sequence of nonnegative nonstandard reals ε0, ε1, . . . such that st(εβ+1/εβ) = 0 and ν = ε0μ0 +
ε1μ1 + · · · . As the following example shows, this is not an accident. There exists NPSs that are not equivalent to any LPS.

Example 4.8. As in Example 3.3, let W = N, the natural numbers, let F consist of the finite and cofinite subsets of N, and
let F ′ = F − {∅}. Let ν1 be an NPS with range R(ε), where ν1(U ) = |U |ε if U is finite and ν1(U ) = 1 − |U |ε if U is cofinite
(as usual, U denotes the complement of U , which in this case is finite). This is clearly an NPS, and it corresponds to the
cps μ1 of Example 3.3, in the sense that st(ν1(V | U )) = μ1(V | U ) for all V ∈ F , U ∈ F ′ . Just as in Example 3.3, it can be
shown that there is no LPS �μ such that ν1 ≈ �μ.

To see the potential relevance of this setup, suppose that a natural number is chosen at random and, intuitively, all
numbers are equally likely to be chosen. An agent may place a bet on the number being in a finite or cofinite set. Intuitively,
the agent should prefer a bet on a set with larger cardinality. More precisely, if U1 and U2 are two sets in the algebra, the
agent should prefer a bet on U1 over a bet on U2 iff (a) U1 and U2 are both cofinite and the complement of U1 has
smaller cardinality than that of U2, (b) U1 is cofinite and U2 is finite, or (c) U1 and U2 are both finite, and U1 has larger
cardinality than U2. These preferences on acts or bets should translate to statements of likelihood. The NPS captures these
preferences directly; they cannot be captured in an LPS. The cps of Example 3.3 captures (b) directly, and (c) indirectly:
when conditioning on any finite set that contains U1 ∪ U2, the probability of U1 will be higher than that of U2.

4.3. Countably additive nonstandard probability measures

Do things get any better if countable additivity is required? To answer this question, I must first make precise what
countable additivity means in the context of non-Archimedean fields. To understand the issue here, recall that for the
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standard real numbers, every bounded nondecreasing sequence has a unique least upper bound, which can be taken to be
its limit. Given a countable sum each of whose terms is nonnegative, the partial sums form a nondecreasing sequence. If
the partial sums are bounded (which they are if the terms in the sums represent the probabilities of a pairwise disjoint
collection of sets), then the limit is well defined.

None of the above is true in the case of non-Archimedean fields. For a trivial counterexample, consider the sequence
ε,2ε,3ε, . . . . Clearly this sequence is bounded (by any positive real number), but it does not have a least upper bound. For
a more subtle example, consider the sequence 1/2,3/4,7/8, . . . in the field R(ε). Should its limit be 1? While this does not
seem to be an unreasonable choice, note that 1 is not the least upper bound of the sequence. For example, 1 − ε is greater
than every term in the sequence, and is less than 1. So are 1 − 3ε and 1 − ε2. Indeed, this sequence has no least upper
bound in R(ε).

Despite these concerns, I define limits in R(I∗) pointwise. That is, a sequence a1,a2,a3, . . . in R(I∗) converges to b ∈
R(I∗) if, for every n ∈ I∗ , the coefficients of εn in a1,a2,a3, . . . converge to the coefficient of εn in b. (Since the coefficients
are standard reals, the notion of convergence for the coefficients is just the standard definition of convergence in the reals.
Of course, if εn does not appear explicitly, its coefficient is taken to be 0.) Note that here and elsewhere I use the letters a
and b (possibly with subscripts) to denote (standard) reals, and ε to denote an infinitesimal. As usual,

∑∞
i=1 ai is taken to

be b if the sequence of partial sums
∑n

i=1 ai converges to b. Note that, with this notion of convergence, 1/2,3/4,7/8, . . .

converges to 1 even though 1 is not the least upper bound of the sequence.6 I discuss the consequences of this choice
further in Section 7.

With this notion of countable sum, it makes perfect sense to consider countably-additive nonstandard probability mea-
sures. If F is a σ -algebra and LPSc(W , F ) and NPSc(W , F ) denote the countably additive LPS’s and NPS’s on (W , F ),
respectively, then Theorem 4.7 can be applied with no change in proof to show the following.

Theorem 4.9. F L→N is an injection from LPSc(W , F )/ ≈ to NPSc(W , F )/ ≈.

However, as the following example shows, even with the requirement of countable additivity, there are nonstandard
probability measures that are not equivalent to any LPS.

Example 4.10. Let W = {w1, w2, w3, . . .}, and let F = 2W . Choose any nonstandard I∗ and fix an infinitesimal ε in R(I∗).
Define an NPS (W , F , ν) with range R(I∗) by taking ν(w j) = a j +b jε , where a j = 1/2 j , b2 j−1 = 1/2 j−1, and b2 j = −1/2 j−1,
for j = 1,2,3, . . . . Thus, the probabilities of w1, w2, . . . are characterized by the sequence 1/2+ε,1/4−ε,1/8+ε/2,1/16−
ε/2,1/32 + ε/4, . . . . For U ⊆ W , define ν(U ) = ∑

{ j: w j∈U } a j + ε
∑

{ j: w j∈U } b j . It is easy to see that these sums are well
defined. These likelihoods correspond to preferences. For example, an agent should prefer a bet that gives a payoff of 1 if
w2 occurs and 0 otherwise to a bet that gives a payoff of 4 if w4 occurs and 0 otherwise. As I show in Appendix A (see
Proposition A.9), there is no LPS �μ over (W , F ) such that ν ≈ �μ.

Roughly speaking, the reason that ν is not equivalent to any LPS in Example 4.10 is that the ratio between a j and b j
in the definition of ν (i.e., the ratio between the “standard part” of ν(w j) and the “infinitesimal part” of ν(w j)) goes to
zero. This can be generalized so as to give a condition on nonstandard probability measures that is necessary and sufficient
to guarantee that they can be represented by an LPS. However, the condition is rather technical and I have not found an
interesting interpretation of it, so I do not pursue it here.

5. Relating Popper spaces to NPS’s

Consider the map F N→P from nonstandard probability spaces to Popper spaces such that F N→P (W , F , ν) =
(W , F , F ′,μ), where F ′ = {U : ν(U ) �= 0} and μ(V | U ) = st(ν(V | U )) for V ∈ F , U ∈ F ′ . I leave it to the reader to
check that (W , F , F ′,μ) is indeed a Popper space. This is arguably the most natural map; for example, it is easy to check
that F N→P ◦ F S→N = F S→P , where F S→N is the restriction of F L→N to SLPSs. (Note that F L→N is well defined on SLPS’s,
since if �μ is an SLPS, by Proposition 4.3, [ �μ] = { �μ}.)

We might hope that F N→P is a bijection from NPS(W , F )/ ≈ to Pop(W , F ). As I show shortly, it is not. To understand
F L→N better, define an equivalence relation � on NPS(W , F ) (and NPSc(W , F )) by taking ν1 � ν2 if {U : ν1(U ) = 0} =
{U : ν2(U ) = 0} and st(ν1(V | U )) = st(ν2(V | U )) for all V , U such that ν1(U ) �= 0. Thus, � essentially says that infinitesimal
differences between conditional probabilities do not count. Let NPS/� (resp., NPSc/�) consist of the � equivalence classes
in NPS (resp., NPSc). Clearly F N→P is well defined as a map from NPS/� to Pop(W , F ) and from NPSc/� to Popc(W , F ). As
the following result shows, F N→P is actually a bijection from NPSc/� to Popc(W , F ).

Theorem 5.1. F N→P is a bijection from NPS(W , F )/� to Pop(W , F ) and from NPSc(W , F )/� to Popc(W , F ).

6 For those used to thinking of convergence in topological terms, what is going on here is that the topology corresponding to this notion of convergence
is not Hausdorff.
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Proof. It is easy to see that F N→P is an injection. In the countable case, the inverse map can be defined using earlier re-
sults. If (W , F , F ′,μ) ∈ Popc(W , F ), by Theorem 3.5, there is a countably additive SLPS �μ′ such that F S→P ((W , F , �μ′)) =
(W , F , F ′,μ). By Theorem 4.7, there is some (W , F , ν) ∈ NPSc(W , F ) such that ν ≈ �μ′ . It is not hard to show that
F N→P (W , F , ν) = (W , F , F ′,μ); see Appendix A for details. Showing that F N→P is a surjection in the finitely additive
case requires more work; again, see Appendix A for details. �

McGee (1994) proves essentially the same result as Theorem 5.1 in the case that F is an algebra (and the measures
involved are not necessarily countably additive). McGee (1994, p. 181) says that his result shows that “these two approaches
amount to the same thing.” However, this is far from clear. The � relation is rather coarse. In particular, it is coarser than ≈.

Proposition 5.2. If ν1 ≈ ν2 then ν1 � ν2 .

The converse of Proposition 5.2 does not hold in general. As a result, the � relation identifies nonstandard measures that
behave quite differently in decision contexts. This difference already arises in finite spaces, as the following example shows.

Example 5.3. Suppose W = {w1, w2}. Consider the nonstandard probability measure ν1 such that ν1(w1) = 1/2 + ε and
ν1(w2) = 1/2 − ε . (This is equivalent to the LPS (μ1,μ2) where μ1(w1) = μ2(w2) = 1/2, μ2(w1) = 1, and μ2(w2) = 0.)
Let ν2 be the nonstandard probability measure such that ν2(w1) = ν2(w2) = 1/2. Clearly ν1 � ν2. However, it is not the case
that ν1 ≈ ν2. Consider the two random variables χ{w1} and χ{w2} . (I use the notation χU to denote the indicator function
for U ; that is, χU (w) = 1 if w ∈ U and χU (w) = 0 otherwise.) According to ν1, the expected value of χ{w1} is (very slightly)
higher than that of χ{w2} . According to ν2, χ{w1} and χ{w2} have the same expected value. Thus, ν1 �≈ ν2. Moreover, it is
easy to see that there is no Popper measure μ on {w1, w2} that can make the same distinctions with respect to χ{w1}
and χ{w2} as ν1, no matter how we define expected value with respect to a Popper measure. According to ν1, although
the expected value of χ{w1} is higher than that of χ{w2} , the expected value of χ{w1} is less than that of αχ{w2} for any
(standard) real α > 1. There is no Popper measure with this behavior.

More generally, in finite spaces, Theorem 3.1 shows that Popper spaces are equivalent to SLPS’s, while Theorem 4.5 shows
that LPS(W , F )/ ≈ is equivalent to NPS(W , F )/ ≈. By Proposition 4.3, SLPS(W , F )/ ≈ is essentially identical to SLPS(W , F )

(all the equivalence classes in SLPS(W , F )/ ≈ are singletons), so in finite spaces, the gap in expressive power between
Popper spaces and NPS’s essentially amounts to the gap between SLPS(W , F ) and LPS(W , F )/ ≈. This gap is nontrivial. For
example, there is no SLPS equivalent to the LPS (μ1,μ2) that represents the NPS in Example 5.3.

6. Independence

The notion of independence is fundamental. As I show in this section, the results of the previous sections sheds light on
various notions of independence considered in the literature for LPS’s and (variants of) cps’s. I first consider independence
for events and then independence for random variables. I then relate my definitions to those of BBD, Kohlberg and Reny
(1997).

Intuitively, event U is independent of V if learning U gives no information about V . Certainly if learning U gives no
information about V , then if μ is an arbitrary probability measure, we would expect that μ(V | U ) = μ(V ). Indeed, this
is often taken as the definition of V being independent of U with respect to μ. If standard probability measures are
used, conditioning is not defined if μ(U ) = 0. In this case, U is still considered independent of V . As is well known,
if U is independent of V , then μ(U ∩ V ) = μ(V ) × μ(U ) and V is independent of U , that is, μ(U | V ) = μ(U ). Thus,
independence of events with respect to a probability measure can be defined in any of three equivalent ways. Unfortunately,
these definitions are not equivalent for other representations of uncertainty (see (Halpern, 2003, Chapter 4) for a general
discussion of this issue).

The situation is perhaps simplest for nonstandard probability measures.7 In this case, the three notions coincide, for
exactly the same reasons as they do for standard probability measures. However, independence is perhaps too strong a
notion in some ways. In particular, nonstandard measures that are equivalent do not in general agree on independence, as
the following example shows.

Example 6.1. Suppose that W = {w1, w2, w3, w4}. Let νi(w1) = 1 − 2ε + εi , νi(w2) = νi(w3) = ε − εi , and νi(w4) = εi , for
i = 1,2, where ε1 = ε2 and ε2 = ε3. If U = {w2, w4} and V = {w3, w4}, then νi(U ) = νi(V ) = ε and νi(U ∩ V ) = εi . It
follows U and V are independent with respect to ν1, but not with respect to ν2. However, it is easy to check that ν1 ≈ ν2.

Example 6.1 shows that independence of events in the context of nonstandard measures is very sensitive to the choice
of ε , even if this choice does not affect decision making at all. This suggests the following definition: U is approximately in-

7 Although I talk about U being independent of V with respect to a nonstandard measure ν , technically I should talk about U being independent of V
with respect to an NPS (W , F , ν), for U , V ∈ F . I continue to be sloppy at times, reverting to more careful notation when necessary.



168 J.Y. Halpern / Games and Economic Behavior 68 (2010) 155–179
dependent of V with respect to ν if ν(U ) �= 0 implies that ν(V | U )−ν(V ) is infinitesimal, that is, if st(ν(V | U )) = st(ν(V )).
Note that U can be approximately independent of V without V being approximately independent of U . For example, con-
sider the nonstandard probability measure ν1 from Example 6.1. Let V ′ = {w4}; as before, let U = {w2, w4}. It is easy to
check that st(ν1(V ′ | U )) = st(ν1(V ′)) = 0, but st(ν1(U | V ′)) = 1, while st(ν1(U )) = 0. Thus, U is approximately independent
of V ′ with respect to ν1, but V ′ is not approximately independent of U . Similarly, U can be approximately independent of
V without U being approximately independent of V . For example, it is easy to check that V ′ is approximately independent
of U with respect to ν1, although V ′ is not.

A straightforward argument shows that U is approximately independent of V with respect to ν iff ν(U ) �= 0 implies
st((ν(V ∩U )−ν(V )×ν(U ))/ν(U )) = 0, while V is approximately independent of U with respect to ν iff the same statement
holds with the roles of V and U reversed. Note for future reference that each of these requirements is stronger than just
requiring that st(ν(V ∩ U ) − ν(V ) × ν(U )) = 0. The latter requirement is automatically met, for example, if the probability
of either U or V is infinitesimal.

The definition of (approximate) independence extends in a straightforward way to (approximate) conditional indepen-
dence. U is conditionally independent of V given V ′ with respect to a (standard or nonstandard) probability measure ν if
ν(U ∩ V ′) �= 0 implies ν(V | U ∩ V ′) = ν(V | V ′). Again, for probability, U is conditionally independent of V given V ′ iff
V is conditionally independent of U given V ′ iff ν(V ∩ U | V ′) = ν(V | V ′) × ν(U | V ′). U is approximately conditionally
independent of V given V ′ with respect to ν if st(ν(V | U ∩ V ′)) = st(ν(V | V ′)). If V ′ is taken to be W , the whole space,
then (approximate) conditional independence reduces to (approximate) independence.

The following proposition shows that, although independence is not preserved by equivalence, approximate independence
is.

Proposition 6.2. If U is approximately conditionally independent of V given V ′ with respect to ν , and ν ≈ ν ′ , then U is approximately
conditionally independent of V given V ′ with respect to ν ′ .

Proof. Suppose that ν ≈ ν ′ . I claim that for all events U1 and U2 such that ν1(U2) �= 0, st(ν(U1)/ν(U2)) = st(ν ′(U1)/ν
′(U2)).

For suppose that st(ν(U1)/ν(U2)) = α. Then it easily follows that Eν(χU1 ) < Eν(α′χU2 ) for all α′ > α, and Eν(χU1 ) >

Eν(α′′χU2 ) for all α′′ < α. Thus, the same must be true for Eν ′ , and hence st(ν ′(U1)/ν
′(U2)) = α. It thus follows that

st(ν(V | U ∩ V ′)) = st(ν ′(V | U ∩ V ′)) and st(ν(V | V ′)) = st(ν ′(V | V ′)), from which the result is immediate. �
There is an obvious definition of independence for events for Popper spaces: U is independent of V given V ′ with

respect to the Popper space (W , F , F ′,μ) if U ∩ V ′ ∈ F ′ implies that μ(V | U ∩ V ′) = μ(V | V ′); if U ∩ V ′ /∈ F ′ , then U is
also taken to be independent of V given V ′ . If U is independent of V given V ′ and V ′ ∈ F ′ , then μ(U ∩ V | V ′) = μ(U |
V ′) × μ(V | V ′). However, the converse does not necessarily hold. Nor is it the case that if U is independent of V given V ′
then V is independent of U given V ′ . A counterexample can be obtained by taking the Popper space arising from the NPS
in Example 6.1. Consider the Popper space (W ,2W , F ′,μ) corresponding to the NPS (W ,2W , ν1) via the bijection F N→P .
It is easy to check that U is independent of V ′ but V ′ is not independent of U with respect to this Popper space, although
μ(V ′ ∩ U ) = μ(U | V ′) × μ(V ′) (= 0). This observation is an instance of the following more general result, which is almost
immediate from the definitions:

Proposition 6.3. U is approximately independent of V given V ′ with respect to the NPS (W , F , ν) iff U is independent of V given V ′
with respect to the Popper space F N→P (W , F , ν).

How should independence be defined in LPS’s? Interestingly, neither BBD nor Hammond define independence directly
for LPS’s. However, they do give definitions in terms of NPS’s that can be applied to equivalent LPS’s; indeed, BBD (1991b)
do just this (see the discussion of BBD strong independence below).

I now consider independence for random variables. If X is a random variable on W , let V (X) denote range (set of
possible values) of random variable X ; that is, V (X) = {X(w): w ∈ W }. Recall that I am assuming that all random variables
have countable range. Random variable X is independent of Y with respect to a standard probability measure μ if the event
X = x is independent of the event Y = y with respect to μ, for all x ∈ V (X) and y ∈ V (Y ). By analogy, for nonstandard
probability measures, following Kohlberg and Reny (1997), define X and Y to be weakly independent with respect to ν if
X = x is approximately independent of Y = y and Y = y is approximately independent of X = x with respect to ν for all
x ∈ V (X) and y ∈ V (Y ).8

For standard probability measures, it easily follows that if X is independent of Y , then X ∈ U1 is independent of Y ∈ V 1
conditional on Y ∈ V 2 and Y ∈ V 1 is independent of X ∈ U1 conditional on X ∈ U2, for all U1, U2 ⊆ V (X) and V 1, V 2 ⊆ V (Y ).
The same arguments show that this is also true for nonstandard probability measures. However, the argument breaks down
for approximate independence.

8 Kohlberg and Reny’s definition of weak independence also requires that the joint range of X and Y be the product of the individual ranges. That is, for
X and Y to be weakly independent, it must be the case that for all x ∈ V(X) and y ∈ V(Y ), there exists some w ∈ W such that X(w) = x and Y (w) = y.
Of course, this requirement could also be added to the definition I am proposing here; adding it would not affect any of the results of this paper.
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Example 6.4. Suppose that W = {1,2,3}×{1,2}. Let X and Y be the random variables that project onto the first and second
components of a world, respectively, so that X(i, j) = i and Y (i, j) = j. Let ν be the nonstandard probability measure on W
given by the following table:

Y = 1 Y = 2

X = 1 1 − 3ε − 3ε2 ε

X = 2 ε ε2

X = 3 ε 2ε2

It is easy to check that X and Y are weakly independent with respect to ν , for all i ∈ {1,2,3}, j ∈ {2,3}. However,
st(ν(X = 2 | X ∈ {2,3} ∩ Y = 2)) = 1/3, while st(ν(X = 2 | X ∈ {2,3})) = 1/2.

In light of this example, I define X to be approximately independent of {Y1, . . . , Yn} with respect to ν if X ∈ U1 is ap-
proximately independent of (Y1 ∈ V 1) ∩ . . . ∩ (Yn ∈ Vn) conditional on (Y1 ∈ V ′

1) ∩ . . . ∩ (Yn ∈ V ′
n) with respect to ν for

all U1 ⊆ V (X), V i, V ′
i ⊆ V (Yi), and i = 1, . . . ,n. X1, . . . , Xn are approximately independent with respect to ν if Xi is approxi-

mately independent of {X1, . . . , Xn} − {Xi} with respect to ν for i = 1, . . . ,n. I leave to the reader the obvious extensions to
conditional independence and the analogues of this definition for Popper spaces and LPS’s.

As I said, BBD consider three notions of independence for random variables. One is a decision-theoretic notion of stochas-
tic independence on preference relations on acts over W . Under appropriate assumptions, it can be shown that a preference
relation is stochastically independent iff it can be represented by some (real-valued) utility function u and a nonstandard
probability measure ν such that X1, . . . , Xn are approximately independent with respect to ν (Battigalli and Veronesi, 1996).
A second notion they consider is a weak notion of product measure that requires only that there exist measures ν1, . . . , νn
such that st(ν(w1, . . . , wn)) = st(ν1(w1) × · · · × ν(wn)). As we have already observed, this notion of independence is rather
weak. Indeed, an example in BBD shows that it misses out on some interesting decision-theoretic behavior.

The third notion of independence that BBD consider is the strongest. BBD (1991b) define X1, . . . , Xn to be strongly inde-
pendent with respect to an LPS �μ if they are independent (in the usual sense) with respect to an NPS ν such that μ ≈ ν .9

Moreover, they give a characterization of this notion of strong independence, which I henceforth call BBD strong indepen-
dence, to distinguish it from the KR notion of strong independence that I discuss shortly. Given a tuple �r = (r0, . . . , rk−1) of
vectors of reals in (0,1)k and a finite LPS �μ = (μ0, . . . ,μk), let �μ � �r be the (standard) probability measure(

1 − r0)μ0 + r0[(1 − r1)μ1 + r1[(1 − r2)μ2 + r2[· · · + rk−2[(1 − rk−1)μk−1 + rk−1μk] . . .
]]]

.

Note that �μ � �r is defined only if �μ is finite. Thus, in discussing BBD strong independence, I restrict to finite LPS’s. In
addition, for technical reasons that will become clear in the proof of Theorem 6.5, I consider only random variables with
finite range, which is what BBD do as well. BBD (1991b, p. 90) claim without proof that “it is straightforward to show”
that X1, . . . , Xn are BBD strongly independent with respect to �μ iff there is a sequence �r j , j = 1,2, . . . , of vectors in (0,1)k

such that �r j → (0, . . . ,0) as j → ∞, and X1, . . . , Xn are independent with respect to �μ � �r j for j = 1,2,3, . . . . I can prove
this result only if the NPS ν such that �μ ≈ ν and X1, . . . , Xn are independent with respect to ν has a range that is an
elementary extension of the reals (and thus has the same first-order properties as the reals).

Theorem 6.5. There exists an NPS ν whose range is an elementary extension of the reals such that �μ ≈ ν and X1, . . . , Xn are inde-
pendent with respect to ν iff there exists a sequence �r j , j = 1,2, . . . , of vectors in (0,1)k such that �r j → (0, . . . ,0) as j → ∞, and
X1, . . . , Xn are independent with respect to �μ � �r j for j = 1,2,3, . . . .

I do not know if this result holds without requiring that ν be an elementary extension of the reals.
Kohlberg and Reny (1997) define a notion of strong independence with respect to what they call relative probability spaces,

which are closely related to Popper spaces of the form (W ,2W ,2W − {∅},μ), where all subsets of W are measurable and
it is possible to condition on all nonempty sets. Their definition is similar in spirit to the characterization of BBD strong
independence given in Theorem 6.5. For ease of exposition, I recast their definition in terms of Popper spaces. X1, . . . , Xn
are KR-strongly independent with respect to the Popper space (W , F , F ′,μ), where F ′ includes all events of the form
Xi = x for x ∈ V (Xi), if there exist a sequence of standard probability measures μ1,μ2, . . . such that μ j → μ, and for all
j = 1,2,3, . . . , μ j(U ) > 0 for U ∈ F ′ and X1, . . . , Xn are independent with respect to μ j . As Kohlberg and Reny show,
KR-strong independence implies approximate independence10 and is, in general, strictly stronger.

The following theorem characterizes KR strong independence in terms of NPS’s.

Theorem 6.6. X1, . . . , Xn are KR-strongly independent with respect to the Popper space (W , F , F ′,μ) iff there exists an NPS
(W , F , ν) such that F N→P (W , F , ν) = (W , F , F ′,μ) and X1, . . . , Xn are independent with respect to (W , F , ν).

9 In (Blume et al., 1991b), BBD say that this definition of strong independence is given in Blume et al. (1991a). However, the definition appears to be
given only in terms of NPS’s in Blume et al. (1991a).
10 They actually show only that it implies weak independence, but the same argument shows that it implies approximate independence.
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It follows from the proof that we can require the range of ν to be a nonelementary extension of the reals, but this is not
necessary.

Kohlberg and Reny show that their notions of weak and strong independence can be used to characterize Kreps and
Wilson’s (1982) notion of sequential equilibrium. BBD (1991b) use their notion of strong independence in their characteri-
zation of perfect equilibrium and proper equilibrium for games with more than two players. Finally, Battigalli (1996) uses
approximate independence (or, equivalently, independence in cps’s) to characterize sequential equilibrium.

7. Discussion

As the preceding discussion shows, there is a sense in which NPS’s are more general than both Popper spaces and LPS’s.
It would be of interest to get a natural characterization of those NPS’s that are equivalent to Popper spaces and LPS’s; this
remains an open problem. LPS’s are more expressive than Popper measures in finite spaces and in infinite spaces where
we assume countable additivity (in the sense discussed at the end of Section 5), but without assuming countable additivity,
they are incomparable, as Examples 3.3 and 3.4 show. Since all of these approaches to representing uncertainty have been
using in characterizing solution concepts in extensive-form games and notions of admissibility, the results here suggest that
it is worth considering the extent to which these results depend on the particular representation used.

It is worth stressing here that this notion of equivalence depends on the fact that I have been viewing cps’s, LPS’s, and
NPS’s as representations of uncertainty. But, as Asheim (2006) emphasizes, they can also be viewed as representations of
conditional preferences. Example 5.3 shows that, even in finite spaces, NPS’s and LPS’s can express preferences that cps’s
cannot. However, as Asheim and Perea (2005) point out, in finite spaces, cps’s can also represent conditional preferences
that cannot be represented by LPS’s and NPS’s. See Asheim (2006) for a detailed discussion of the expressive power of these
representations with respect to conditional preferences.

Although NPS’s are the most expressive of the three approaches I have considered, they have some disadvantages. In
particular, working with a nonstandard probability measure requires defining and working with a non-Archimedean field.
LPS’s have the advantage of using just standard probability measures. Moreover, their lexicographic structure may give
useful insights. It seems to be worth considering the extent to which LPS’s can be generalized so as to increase their
expressive power. In particular, it may be of interest to consider LPS’s indexed by partially ordered and not necessarily
well-founded sets, rather than just LPS’s indexed by the ordinals. For example, Brandenburger et al. (2008) characterize n
rounds of iterated deletion using finite LPS’s, for any n. Rather than using a sequence of (finite) LPS’s of different lengths
to characterize (unbounded) iterated deletion, it seems that a result similar in spirit can be obtained using a single LPS
indexed by the (positive and negative) integers.

I conclude with a brief discussion of a few other issues raised by this paper.

Belief. The connections between LPS’s, NPS’s, and cps’s are relevant to the notion of belief. There are two standard notions of
belief that can be defined in LPS’s. Say that U is a certain belief in LPS �μ of length α if μβ(U ) = 1 for all β < α; U is weakly
believed if μ0(U ) = 1. Brandenburger et al. (2008) defined a third notion of belief, intermediate between weak and strong
belief, and provided an elegant decision-theoretic justification of it. According to their definition, an agent assumes U in �μ if
there is some β < α such that (a) μβ ′ (U ) = 1 for all β ′ � β , (b) μβ ′′ (U ) = 0 for all β ′′ > β , and (c) U ⊆ ⋃

β ′�β Supp(μβ ′ ),
where Supp(μβ ′ ) denotes the support of the probability measure μβ ′ . (Condition (c) is unnecessary if W is finite, given
Brandenburger, Friedenberg, and Keisler’s assumption that W = ⋃

β ′ Supp(μβ ′ ).) There are straightforward analogues of
certain belief and weak belief in Popper spaces. U is strongly believed in a Popper space (W , F , F ′,μ) if μ(U | V ) = 1 for
all V ∈ F ′; U is weakly believed if μ(U | V ) = 1 for all V ∈ F ′ such that μ(V ) > 0. Analogues of this notion of assumption
have been considered elsewhere in the literature. Van Fraassen (1995) independently defined a notion of belief using Popper
spaces; in a finite state space, an event is what van Fraassen calls a belief core iff it is assumed in the sense of Brandenburger,
Friedenberg, and Keisler. Battigalli and Siniscalchi’s (2002) notion of strong belief is also essentially equivalent. Assumption
also corresponds to Stalnaker’s (1998) notion of absolutely robust belief and Asheim and Søvik (2005) notion of robust belief.
Asheim and Søvik (2005) do a careful comparison of all these notions (and others).

It is easy to define analogues of certain and weak belief in NPS’s: U is certain belief if ν(U ) = 1; U is weakly believed if
st(ν(U )) = 1. The results of this paper suggest that it may also be worth investigating an analogue of assumption in NPS’s.

Nonstandard utility. In this paper, while I have allowed probabilities to be lexicographically ordered or nonstandard, I have
implicitly assumed that utilities are standard real numbers (since I have restricted to real-valued random variables). There
is a tradition in decision theory going back to Hausner (1954) and continued recently in a sequence of papers by Fishburn
and Lavalle (see Fishburn and Lavalle, 1998 and the references therein) and Hammond (1999) of considering nonstandard or
lexicographically-ordered utilities. I have not considered the relationship between these ideas and the ones considered here,
but there may be some fruitful connections.

Countable additivity for NPS’s. Countable additivity for standard probability measures is essentially a continuity condition.
The fact that

∑∞
i=1 ai may not be the least upper bound of the partial sums

∑n
i=1 ai in an NPS leads to a certain lack

of continuity in decision-making. For example, let W = {w1, w2, . . .}. Consider a nonstandard probability measure ν such
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that ν(w1) = 1/3 − ε , ν(w2) = 1/3 + ε , and ν(wk+2) = 1/(3 × 2k), for k = 1,2, . . . . Let Un = {w3, . . . , wn} and let U∞ =
{w3, w4, . . .}. Clearly ν(Un) → ν(U∞) = 1/3. However, ν(Un) < ν(w1) for all n. Thus, Eν(χ{w1}) > Eν(χUn ) for all n � 3
although Eν(χ{w1}) < Eν(χU∞ ).

Not surprisingly, the same situations can be modeled with LPS’s. Consider the LPS (μ1,μ2), where μ1 = st(ν),
μ2(w1) = 0, μ2(w2) = 2/3, and μ2(wk+2) = 1/(3 × 2k) for k = 1,2, . . . . It is easy to see that again E �μ(χ{w1}) > E �μ(χUn )

for all n � 3 although E �μ(χ{w1}) < Eν(χU∞ ). (A similar example can be obtained using SLPS’s, by replacing each world wi
by a pair of worlds w ′

i, w ′′
i , where w ′

i is in the support of μ1 and w ′′
i is in the support of μ2.)

An analogous continuity problem arises even in finite domains. Let W = {w1, w2, w3} and consider a sequence of prob-
ability measures νn such that νn(w1) = 1/3 − 1/n, νn(w2) = 1/3 − ε and ν(w3) = 1/3 + 1/n + ε . Clearly νn → ν , where
ν(w1) = 1/3, ν(w2) = 1/3 − ε , and ν(w3) = 1/3 + ε . However, νn(χ{w1}) < νn(χ{w2}) for all n, while ν(χ{w1}) > ν(χ{w2}).
Again, the same situation can be modeled using LPS’s (and even SLPS’s).

Of course, continuity plays a significant role in standard axiomatizations of SEU, and is vital in proving the existence of
a Nash equilibrium. None of the uses of continuity that I am familiar with have the specific form of this example, but I
believe it is worth considering further the impact of this lack of continuity.
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Appendix A. Proofs

In this section, I prove all the results claimed in the main part of the paper. For the convenience of the reader, I repeat
the statements of the results.

Theorem 3.1. If W is finite and (F , F ′), then F S→P is a bijection from SLPS(W , F , F ′) to Pop(W , F , F ′).

Proof. The first step is to show that F S→P is an injection. If �μ, �μ′ ∈ SLPS(W , F , F ′) and �μ �= �μ′ , let μ = F S→P (W , F , �μ),
and let μ′ = F S→P (W , F , �μ′). Let i be the least index such that μi �= μ′

i . There is some set U such that μi(U ) �= μ′
i(U ).

Let Ui be the set such μi(Ui) = 1 and μ j(Ui) = 0 for j < i; since �μ is an SLPS, such a set Ui exists. Similarly, let U ′
i be

such that μ′
i(Ui) = 1 and μ′

j(Ui) = 0 for j < i. Since μ j = μ′
j for all j < i, we must have μ j(Ui ∪ U ′

i) = μ j(Ui ∪ U ′
i) = 0

for all j < i. Clearly �μ(U j ∪ U ′
j) > 0, so U j ∪ U ′

j ∈ F ′ . Moreover, μ(U | Ui ∪ U ′
i) = μi(U | Ui ∪ U ′

i) = μi(U ). Similarly,
μ′(U | Ui ∪ U ′

i) = μ′
i(U ). Hence, μ �= μ′ .

To show that F S→P is a surjection, given a cps μ, let �μ = (μ0, . . . ,μk) be the LPS constructed in the main text. We
must show that F S→P ( �μ) = (W , F , F ′,μ). Suppose that F S→P ( �μ) = (W , F , F ′′,μ′). I first show that F ′ = F ′′ . Suppose
that V ∈ F ′′ . Then μi(V ) > 0 for some i. Thus, μ(V | Ui) > 0. Since Ui ∈ F ′ , it follows that V ∈ F ′ . Thus, F ′′ ⊆ F ′ .

To show that F ′ ⊆ F ′′ , first note that, by construction, μ(U j | U0 ∪ . . . ∪ U j−1) = 1. It easily follows that if V ⊆
U0 ∪ . . . ∪ U j−1 then

μ(V | U0 ∪ . . . ∪ U j−1) = μ(V ∩ U j | U0 ∪ . . . ∪ U j−1).

Thus, by CP3,

μ(V | U0 ∪ . . . ∪ U j−1) = μ(V ∩ U j | U0 ∪ . . . ∪ U j−1) = μ(V | U j) × μ(U j | U0 ∪ . . . ∪ U j−1),

so

μ(V | U j) = μ(V | U0 ∪ . . . ∪ U j−1). (1)

Now suppose that V ∈ F ′ . Clearly V ∩ (U0 ∪ . . . ∪ Uk) �= ∅, for otherwise V ⊆ U0 ∪ . . . ∪ Uk , contradicting the fact that
U0 ∪ . . . ∪ Uk /∈ F ′ . Let jV be the smallest index j such that V ∩ U j �= ∅. I claim that μ(V | U0 ∪ . . . ∪ U jV −1) �= 0. For if
μ(V | U0 ∪ . . . ∪ U jV −1) = 0, then μ(U jV − V | U0 ∪ . . . ∪ U jV −1) = 1, contradicting the definition of U jV as the smallest
set U ′ such that μ(U ′ | U0 ∪ . . . ∪ U jV −1) = 1. Moreover, since V ⊆ U0 ∪ . . . U jV −1, it follows from (1) that μ(V | U jV ) =
μ(V | U0 ∪ . . . ∪ U jV −1) > 0. Thus, μ jV (V ) > 0, so V ∈ F ′′ .

This argument can be extended to show that μ(V ′ | V ) = μ′(V ′ | V ) for all V ′ ∈ F . Since V ∩ Ui = ∅ for i < jV , it follows
that μ′(V ′ | V ) = μ jV (V ′ | V ). By CP3, μ(V ′ | V ) × μ(V | U0 ∪ . . . ∪ U jV −1) = μ(V ′ ∩ V | U0 ∪ . . . ∪ U jV −1). By (1) and the
fact that μ(V | U jV ) > 0, it follows that μ(V ′ | V ) = μ(V ′ ∩ V | U jV )/μ(V | U jV ), that is, that μ(V ′ | V ) = μ jV (V ′ | V ). �

Although Theorem 3.5 was proved by Spohn (1986), I include a proof here as well, to make the paper self-contained.
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Theorem 3.5. For all W , the map F S→P is a bijection from SLPSc(W , F , F ′) to Popc(W , F , F ′).

Proof. Again, the difficulty comes in showing that F S→P is onto. As it says in the main text, given a Popper space
(W , F , F ′,μ), the idea is to construct sets U0, U1, . . . and an LPS �μ such that μβ(V ) = μ(V | Uβ), and show that
F S→P (W , F , �μ) = (W , F , F ′,μ). The construction is somewhat involved.

As a first step, put an order � on sets in F ′ by defining U � V if μ(U | U ∪ V ) > 0. (Essentially, the same order is
considered by Van Fraassen (1976).)

Lemma A.1. � is transitive.

Proof. By definition, if U � V and V � V ′ , then μ(U | U ∪ V ) > 0 and μ(V | V ∪ V ′) > 0. To see that μ(U | U ∪ V ′) > 0, note
that μ(U | U ∪ V ∪ V ′)+μ(V | U ∪ V ∪ V ′)+μ(V ′ | U ∪ V ∪ V ′) = 1, so at least one of μ(U | U ∪ V ∪ V ′), μ(V | U ∪ V ∪ V ′),
or μ(V ′ | U ∪ V ∪ V ′) is positive. I consider each of the cases separately.

Case 1. Suppose that μ(U | U ∪ V ∪ V ′) > 0. By CP3,

μ(U | U ∪ V ∪ V ′) = μ(U | U ∪ V ′) × μ(U ∪ V ′ | U ∪ V ∪ V ′).

Thus, μ(U | U ∪ V ′) > 0, as desired.

Case 2. Suppose that μ(V | U ∪ V ∪ V ′) > 0. By assumption, μ(U | U ∪ V ) > 0; since μ(V | U ∪ V ∪ V ′) > 0, it follows that
μ(U ∪ V | U ∪ V ∪ V ′) > 0. Thus, by CP3,

μ(U | U ∪ V ∪ V ′) = μ(U | U ∪ V ) × μ(U ∪ V | U ∪ V ∪ V ′) > 0.

Thus, Case 2 can be reduced to Case 1.

Case 3. Suppose that μ(V ′ | U ∪ V ∪ V ′) > 0. By assumption, μ(V | V ∪ V ′) > 0; since μ(V ′ | U ∪ V ∪ V ′) > 0, it follows that
μ(V ∪ V ′ | U ∪ V ∪ V ′) > 0. Thus, by CP3,

μ(V | U ∪ V ∪ V ′) = μ(V | V ∪ V ′) × μ(V ∪ V ′ | U ∪ V ∪ V ′) > 0.

Thus, Case 3 can be reduced to Case 2.

This completes the proof, showing that � is transitive. �
Define U ∼ V if U � V and V � U .

Lemma A.2. ∼ is an equivalence relation on F ′ .

Proof. It is immediate from the definition that ∼ is reflexive and symmetric; transitivity follows from the transitivity
of �. �

Rényi (1956) and Van Fraassen (1976) also considered the ∼ relation in their papers, and the argument that � is transi-
tive is similar in spirit to Rényi’s argument that ∼ is transitive. However, the rest of this proof diverges from those of Rényi
and van Fraassen.

Let [U ] denote the ∼-equivalence class of U , and let F ′/∼ = {[U ]: U ∈ F ′}.

Lemma A.3. Each equivalence class [V ] ∈ F ′/∼ is closed under countable unions.

Proof. Suppose that V 1, V 2, . . . ∈ [V ]. I must show that
⋃∞

i=1 V i ∈ [V ]. Clearly V j �
⋃∞

i=1 V i for all j. Suppose, by way
of contradiction, that

⋃∞
i=1 V i �� V j for some j. Since � is transitive, it follows that V j <

⋃∞
i=1 V i for all j. Thus,

μ(V j | ⋃∞
i=1 V i) = 0 for all j. But then, by countable additivity,

1 = μ

( ∞⋃
i=1

V i
∣∣ ∞⋃

i=1

V i

)
�

∞∑
j=1

μ

(
V j

∣∣ ∞⋃
i=1

V i

)
= 0,

a contradiction. Thus, [V ] is closed under countable unions. �
Fix an element V 0 ∈ [V ].

Lemma A.4. inf{μ(V 0 | V 0 ∪ V ′): V ′ ∈ [V ]} > 0.
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Proof. Suppose that inf{μ(V 0 | V 0 ∪ V ′): V ′ ∈ [V ]} = 0. Then there exist sets V 1, V 2, . . . such that μ(V 0 | V 0 ∪ Vn) < 1/n.
Since [V ] is closed under countable unions,

⋃n
i=1 V i ∈ [V ]. Since V 0 ∼ ⋃n

i=1 V i , it follows that μ(V 0 | ⋃∞
i=0 V i) > 0. But, by

CP3,

μ

(
V 0

∣∣ ∞⋃
i=0

V i

)
= μ(V 0 | V 0 ∪ Vn) × μ

(
V 0 ∪ Vn

∣∣ ∞⋃
i=0

V i

)
� μ(V 0 | V 0 ∪ Vn) � 1/n.

Since this is true for all n > 0, it follows that μ(V 0 | ⋃∞
i=0 V i) = 0, a contradiction. �

The next lemma shows that each equivalence class in F ′/∼ has a “maximal element.”

Lemma A.5. In each equivalence class [V ], there is an element V ∗ ∈ [V ] such that μ(V ∗ | V ′ ∪ V ∗) = 1 for all V ′ ∈ [V ].

Proof. Again, fix an element V 0 ∈ [V ]. By Lemma A.4, there exists some αV > 0 such that inf{μ(V 0 | V 0 ∪ V ′): V ′ ∈ [V ]} =
αV . Thus, there exist sets V 1, V 2, V 3, . . . ∈ [V ] such that μ(V 0 | V 0 ∪ Vn) < α + 1/n. By Lemma A.3, V ∗ = ⋃∞

i=0 V i ∈ [V ]. By
CP3,

μ(V 0 | V ∗) = μ(V 0 | V 0 ∪ Vn) × μ(V 0 ∪ Vn | V ∗) � μ(V 0 | V 0 ∪ Vn) < αV + 1/n.

Thus, μ(V 0 | V ∗) � αV . By choice of αV , it follows that μ(V 0 | V ∗) = αV .
Suppose that μ(V ∗ | V ′ ∪ V ∗) < 1 for some V ′ ∈ [V ]. But then, by CP3,

μ(V 0 | V ′ ∪ V ∗) = μ(V 0 | V ∗) × μ(V ∗ | V ′ ∪ V ∗) < αV ,

contradicting the choice of αV . Thus, μ(V ∗ | V ′ ∪ V ∗) = 1 for all V ′ ∈ [V ]. �
Define a total order on these equivalence relations by taking [U ] � [V ] if U ′ � V ′ for some U ′ ∈ [U ] and V ′ ∈ [V ]. It

is easy to check (using the transitivity of �) that if U ′ � V ′ for some U ′ ∈ [U ] and some V ′ ∈ [V ], then U ′′ � V ′′ for all
U ′′ ∈ [U ] and all V ′′ ∈ [V ].

Lemma A.6. � is a well-founded relation on F ′/∼.

Proof. Note that if [U ] < [V ], then μ(V | U ∪ V ) = 0. It now follows from countable additivity that < is a well-founded
order on these equivalence classes. For suppose that there exists an infinite decreasing sequence [U0] > [U1] > [U2] > · · · .
Since F is a σ -algebra,

⋃∞
i=0 Ui ∈ F ; since F ′ is closed under supersets,

⋃∞
i=0 Ui ∈ F ′ . By CP3,

μ

(
U j

∣∣ ∞⋃
i=0

Ui

)
= μ(U j | U j ∪ U j+1) × μ

(
U j ∪ U j+1

∣∣ ∞⋃
i=0

Ui

)
= 0.

Let V 0 = U0 and, for j > 0, let V j = U j − (
⋃ j−1

i=0 U j). Clearly the V j ’s are pairwise disjoint,
⋃

i U i = ⋃
i V i , and

μ(V j | ⋃∞
i=0 Ui) � μ(U j | ⋃∞

i=0 Ui) = 0. It now follows that using countable additivity that

1 = μ

( ∞⋃
i=0

Ui
∣∣ ∞⋃

i=0

Ui

)
=

∞∑
i=0

μ

(
V i

∣∣ ∞⋃
i=0

Ui

)
= 0.

This is as contradiction, so the equivalence classes are well founded. �
Because � is well founded, there is an order-preserving bijection O from F ′/∼ to an initial segment of the ordinals

(i.e., [U ] � [V ] iff O ([U ]) � O ([V ])). Thus, the equivalence classes can be enumerated using all the ordinals less than some
ordinal α. By Lemma A.5, there are sets Uβ , β < α, in F ′ such that if O ([U ]) = β , then Uβ ∈ [U ] and μ(Uβ | U ∪ Uβ) = 1 for
all U ′ ∈ [U ]. Define an LPS �μ = (μ0,μ1, . . .) of length α by taking μβ(V ) = μ(V | Uβ). The choice of the Uβ ’s guarantees
that this is actually an SLPS.

It remains to show that (W , F , F ′,μ) is the result of applying F S→P to (W , F , �μ). Suppose that instead (W , F , F ′′,μ′)
is the result. The argument that F ′′ ⊆ F ′ is identical to that in the finite case: If V ∈ F ′′ , then μβ(V ) > 0 for some β . Thus,
μ(V | Uβ) > 0. Since Uβ ∈ F ′ , it follows that V ∈ F ′ . Thus, F ′′ ⊆ F ′ .

Now suppose that V ∈ F ′ . Thus, V ∼ Vβ for some β < α. It follows that μ(V | Vβ) > 0, so V ∈ F ′′ .
Finally, to show that μ(U | V ) = μ′(U | V ), suppose that β is such that V ∼ Vβ . It follows that μ(V | Vβ ′) = 0 for β ′ < β

and μ(V | Vβ) > 0. Thus, by definition, μ′(U | V ) = μβ(U | V ). Without loss of generality, assume that U ⊆ V (otherwise
replace U by U ∩ V ). Thus, by CP3,

μ(U | V ) × μ(V | V ∪ Vβ) = μ(U | V ∪ Vβ). (2)
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Suppose V ′ ⊆ V . Clearly

μ(V ′ | V ∪ Vβ) = μ(V ′ ∩ Vβ | V ∪ Vβ) + μ(V ′ ∩ Vβ | V ∪ Vβ).

Now by CP3 and the fact that μ(Vβ | V ∪ Vβ) = 1,

μ(V ′ ∩ Vβ | V ∪ Vβ) = μ(V ′ | Vβ) × μ(Vβ | V ∪ Vβ) = μ(V ′ | Vβ)

and

μ(V ′ ∩ Vβ | V ∪ Vβ) � μ(Vβ | V ∪ Vβ) = 0.

Thus, μ(V ′ | V ∪ Vβ) = μ(V ′ | Vβ). Applying this observation to both U and V shows that μ(V | V ∪ Vβ) = μ(V | Vβ) and
μ(U | V ∪ Vβ) = μ(U | Vβ). Plugging this into (2), it follows that

μ(U | V ) = μ(U | Vβ)/μ(V | Vβ) = μβ(U )/μβ(V ) = μβ(U | V ) = μ′(U | V ).

This completes the proof of the theorem. �
Proposition 3.9. The map F S→P is a surjection from SLPSc(W , F , F ′) onto T c(W , F , F ′).

Proof. Suppose that μ ∈ T c(W , F , F ′). I want to construct an SLPS �μ ∈ SLPSc(W , F , F ′) such that F S→P ( �μ) = μ. I first
label each element of F ′ with a natural number. Intuitively, if U ∈ F ′ is labeled k, then k will be the least index such that
μk(U ) > 0. The labeling is done by induction on k. Each topmost set in the forest (i.e., the root of some tree in the forest)
is labeled 0, as are all sets U ′ such that μ(U ′ | U ) > 0, where U is a topmost node. These are all the nodes labeled by 0.
Label all the maximal unlabeled sets by 1 (that is, label U ∈ F ′ by 1 if it is not labeled 0, and is not a subset of another
unlabeled set); in addition, label a set U ′ by 1 if μ(U ′ | U ) > 0 and U is labeled by 1. Note that every set at depth 0 or 1 in
the forest is labeled by either 0 or 1.

Suppose that the labeling process has been completed for labels 0, . . . ,k such that the following properties hold, where
label(U ) denotes the label of the event U :

• all sets up to depth k in the forest have been labeled;
• if label(U ) = k′ , U ′ ∈ F ′ , and μ(U ′ | U ) > 0, then label(U ′) � label(U ).

Label all the maximal unlabeled sets with k + 1; in addition, if U ′ is unlabeled and μ(U ′ | U ) > 0 for some U such that
label(U ) = k +1, then assign label k +1 to U ′ . Clearly the two properties above continue to hold. This completes the labeling
process.

Let Ck be the set of maximal sets in F ′ labeled k. T2 and T3 guarantee that, for all k, the sets in Ck are disjoint. Let μ′
k

be an arbitrary probability on W such that μ′
k(U ) > 0 for all U ∈ Ck and

∑
U∈Ck

μ′
k(U ) = 1. Define an LPS �μ = (μ0,μ1, . . .)

as follows (where the length of �μ is ω if Ck �= ∅ for all k, and is k + 1 if k is the largest integer such that Ck �= ∅). For
V ∈ F , let μ j(V ) = ∑

U∈C j
μ(V | U )μ′

j(U ). I now show that �μ(V | U ) = μ(V | U ) for all V ∈ F and U ∈ F ′ . Suppose that

U ∈ Ck . Then μ j(U ) = 0 for all j < k, and μk(U ) > 0. Thus, �μ(V | U ) = μk(V | U ). But it is immediate from the definition
that μk(V | U ) = μ(V | U ). Thus, F S→P ( �μ) = μ. Moreover, if U ∈ F ′ and label(U ) = k, let U ′ be the maximal set containing
U such that label(U ′) = k. (The labeling guarantees that such a set exists.) Then μk(U ′) = μ(U ′ | U ) > 0. It follows that
�μ(U ) > 0 for all u ∈ F ′ . Finally, note that �μ is an SLPS (in fact, an LCPS). If Uk = ⋃

Ck − ⋃
k′>k(

⋃
Ck′ ), then the sets Uk are

disjoint, and μk(Uk) = 1. �
Proposition 4.2. If ν ≈ �μ, then ν(U ) > 0 iff �μ(U ) > �0. Moreover, if ν(U ) > 0, then st(ν(V | U )) = μ j(V | U ), where μ j is the first
probability measure in �μ such that μ j(U ) > 0.

Proof. Recall that for U ⊆ W , χU is the indicator function for U ; that is, χU (w) = 1 if w ∈ U and χU (w) = 0 otherwise.
Notice that Eν(χU ) > Eν(χ∅) iff ν(U ) > 0 and E �μ(χU ) > E �μ(χ∅) iff �μ(U ) > �0. Since ν ≈ �μ, it follows that ν(U ) > 0 iff
�μ(U ) > �0. If ν(U ) > 0, note that Eν(χU∩V − rχU ) > Eν(χ∅) iff r < st(ν(V | U )). Similarly, E �μ(χU∩V − rχU ) > E �μ(χ∅) iff
r < μ j(U ), where j is the least index such that μ j(U ) > 0. It follows that st(ν(V | U )) = μ j(V | U ). �
Proposition 4.3. If �μ, �μ′ ∈ SLPS(W , F ), then �μ ≈ �μ′ iff �μ = �μ′ .

Proof. Clearly �μ = �μ′ implies that �μ ≈ �μ′ . For the converse, suppose that �μ ≈ �μ′ for �μ, �μ′ ∈ SLPS(W , F ). If �μ �= �μ′ , let α
be the least ordinal such that μα �= μ′

α , and let U be such that μα(U ) �= μ′
α(U ). Without loss of generality, suppose that

μα(U ) > μ′
α(U ). Let the sets Uβ be such that μβ(Uβ) = 1 and μβ(Uγ ) = 0 if γ > β; similarly choose the sets U ′

β . Since
μβ = μ′

β for β < α, it follows that μβ(Uα ∪ U ′
α) = μ′

β(Uα ∪ U ′
α) = 0 for β < α; moreover, μα(Uα ∪ U ′

α) = μ′
α(Uα ∪ U ′

α) = 1.
Choose r such that μα(U ) > r > μ′

α(U ). Let X be the random variable χU − rχUα∪U ′
α

and let Y = χ∅ . Then E �μ(X) > E �μ(Y ),
while E �μ′ (X) < E �μ′ (Y ), so �μ �≈ �μ′ . �
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Proposition 4.4. If W is finite, then every LPS over (W , F ) is equivalent to an LPS of length at most |Basic(F )|.

Proof. Suppose that W is finite and Basic(F ) = {U1, . . . , Uk}. Given an LPS �μ, define a finite subsequence �μ′ =
(μk0 , . . . ,μkh ) of �μ as follows. Let μk0 = μ0. Suppose that μk0 , . . . ,μk j have been defined. If all probability measures
in �μ with index greater that k j are linear combinations of the probability measures with index μk0 , . . . ,μk j , then take
�μ′ = (μk0 , . . . ,μk j ). Otherwise, let μk j+1 be the probability measure in �μ with least index that is not a linear combination
of μk0 , . . . ,μk j . Since a probability measure over (W , F ) is determined by its value on the sets in Basic(F ), a probability

measure over (W , F ) can be identified with a vector in R
|Basic(F )|: the vector defining the probabilities of the elements in

Basic(F ). There can be at most |Basic(F )| linearly independent such vectors, thus �μ′ has length at most |Basic(F )|.
It remains to show that �μ′ is equivalent to �μ. Given random variables X and Y , suppose that E �μ(X) < E �μ(Y ). Then

there is some minimal index β such that Eμγ (X) = Eμγ (Y ) for all γ < β and Eμβ (X) < Eμβ (Y ). It follows that μβ cannot
be a linear combination of μγ for γ < β . Thus, μβ is one of the probability measures in �μ′ . Moreover, the expected value
of X and Y agree for all probability measures in �μ′ with lower index (since they do in �μ). Thus, E �μ′ (X) < E �μ′ (X).

The argument in the other direction is similar in spirit and left to the reader. �
Theorem 4.5. If W is finite, then F L→N is a bijection from LPS(W , F )/ ≈ to NPS(W , F )/ ≈ that preserves equivalence (that is, each
NPS in F L→N ([ �μ]) is equivalent to �μ).

Proof. I first provide a sufficient condition for an NPS to be equivalent an LPS in a finite space.

Lemma A.7. Suppose that �μ = (μ0, . . . ,μk), and ε0, . . . , εk are such that st(εi+1/εi) = 0 for i = 1, . . . ,k − 1 and
∑k

i=0 εi = 1. Then
�μ ≈ ε0μ0 + · · · + εkμk.11

Proof. Suppose that there exist ε, . . . , εk as in the statement of the lemma and ν = ε0μ0 + · · · + εkμk . I want to show that
�μ ≈ ν .

If E �μ(X) < E �μ(Y ), then there exists some j � k such that Eμ j (X) < Eμ j (Y ) and Eμ j′ (X) = Eμ j′ (Y ) for all j′ < j. Since

Eν(X) = ∑k
i=0 εi Eμi (X) and Eν(Y ) = ∑k

i=0 εi Eμi (Y ), to show that Eν(X) < Eν(Y ), it suffices to show that ε j(Eμ j (Y ) −
Eμ j (X)) >

∑k
i= j+1 εi(Eμi (X) − Eμi (Y )). Since ε j′+1 � ε j′ for j′ � j (this follows from the fact that st(ε j′+1/ε j′) = 0), it fol-

lows that
∑k

i= j+1 εi(Eμi (X)− Eμi (Y )) � ε j+1
∑k

i= j+1 |Eμi (X)− Eμi (Y )|. Thus, it suffices to show that ε j+1
∑k

i= j+1 |Eμi (X)−
Eμi (Y )| < ε j(Eμ j (Y ) − Eμ j (X)). This is trivially the case if Eμi (X) = Eμi (Y ) for all i such that j + 1 � i � k. Thus, assume

without loss of generality that
∑k

i= j+1 |Eμi (X) − Eμi (Y )| > 0. In this case, it suffices to show that ε j+1/ε j < (Eμ j (Y ) −
Eμ j (X))/

∑k
i= j+1 |Eμi (X) − Eμi (Y )|. Since the right-hand side of the inequality is a positive real and st(ε j+1/ε j) = 0, the

result follows.
The argument in the opposite direction is similar. Suppose that Eν(X) < Eν(Y ). Again, since Eν(X) = ∑k

i=0 εi Eμi (X) and

Eν(Y ) = ∑k
i=0 εi Eμi (Y ), it must be the case that if j is the least index such that Eμ j (X) �= Eμ j (Y ), then Eμ j (X) < Eμ j (Y ).

Thus, E �μ(X) < E �μ(Y ). It follows that �μ ≈ ν . �
It remains to show that, given an NPS (W , F , ν), there is an equivalence class [ �μ] such that F L→N ([ �μ]) = [ν]. As I said

in the main text, the goal now is to find (standard) probability measures μ0, . . . ,μk and ε0, . . . , εk such that st(εi+1/εi) = 0
and ν = ε0μ0 + · · · + εkμk . If this can be done then, by Lemma A.7, ν ≈ (μ0, . . . ,μk), and we are done.

Suppose that Basic(F ) = {U1, . . . , Uk} and that ν has range R
∗ . Note that a probability measure ν ′ on F can be identified

with a vector (a1, . . . ,ak) over R
∗ , where ν ′(Ui) = ai , so that a1 + · · · + ak = 1. In the rest of this proof, I frequently identify

ν with such a vector.

Lemma A.8. There exist k′ � k, ε0, . . . , εk′ where ε0 = 1, st(εi+1/εi) = 0 for i = 1, . . . ,k′ − 1, and standard real-valued vectors �b j ,
j = 0, . . . ,k′ , in R

k such that

ν =
k′∑

j=0

ε j�b j .

Proof. I show by induction on m � k that there exist ε0, . . . , εm and m′ � m such that ε j = 0 for j′ > m′ , st(εi+1/εi) = 0 for
i = 1, . . . ,m′ − 1, and standard vectors �b j , j = 0, . . . ,m − 1, and a possibly nonstandard vector �b′

m = (b′
m1, . . . ,b′

mk) such that

(a) ν = ∑m−1
j=0 ε j�b j + εm�b′

m , (b) |b′
mi | � 1, and (c) at least m of b′

m1, . . . ,b′
mk are standard.

11 Although I do not need this fact here, it is easy to see that if W is finite and �μ = (μ0, . . . ,μk) is an SLPS in LPS(W , F ), then the converse of Lemma A.7
holds as well: if ν ≈ �μ, then ν = ε0μ0 + · · · + εkμk for some ε0, . . . ,μk are such that st(εi+1/εi) = 0 for i = 1, . . . ,k − 1 and

∑k
i=0 εi = 1. (I conjecture this

fact is true in general, not just if �μ is an SLPS, but I have not checked this.)
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For the base case (where m = 0), just take �b′
0 = ν and ε0 = 1. For the inductive step, suppose that 0 � m < k. If �b′

m

is standard, then take �bm = �b′
m , �bm+1 = �0, and εm+1 = 0. Otherwise, let �bm = st(�b′

m) and let �b′′
m+1 = �b′

m − �bm . Let ε′ =
max{|b′′

(m+1)i |: i = 1, . . . ,k}. Since not all components of �b′
m are standard, ε′ > 0. Note that, by construction, st(ε′/bmi) = 0 if

bmi �= 0, for i = 1, . . . ,k. Let �b′
m+1 = �b′′

m+1/ε
′ and let εm+1 = ε′εm . By construction, |b′

(m+1)i | � 1 and at least one component

of �b′
m+1 is either 1 or −1. Moreover, if b′

mi is standard, then b′′
(m+1)i = b′

(m+1)i = 0. Thus, �b′
m+1 has at least one more

standard component that �b′
m . Since clearly ν = ∑m

j=0 ε j�b j +εm+1�b′
m+1, this completes the inductive step. The lemma follows

immediately. �
Returning to the proof of Theorem 4.5, I next prove by induction on m that for all m � k′ (where k′ � k is as in

Lemma A.8), there exist standard probability measures μ0, . . . ,μm , (standard) vectors �bm+1, . . . , �bk′ ∈ R
k , and ε1, . . . , εk′

such that ν = ∑m
j=0 ε jμ j + ∑k′

j=m+1 ε j�b j .

The base case is immediate from Lemma A.8: taking �b j , j = 1, . . . ,k′ as in Lemma A.8, �b0 is in fact a probability measure
since �b0 = st(ν). Suppose that the result holds for m. Consider �bm+1. If b(m+1)i < 0 for some j then, since ν(Ui) � 0, there
must exist j′ ∈ {1, . . . ,m} such that μ j′ (Ui) > 0. Thus, there exists some N > 0 such that N(μ j′ (Ui)) + b(m+1)i > 0. Since
there are only finitely many basic elements and every element in the vector μ j is nonnegative, for j = 0, . . . ,m, there

must exist some N ′ such that �b′
m+1 = N ′(μ0 + · · · + μm) + �bm+1 � 0. Let c = ∑k

i=1 b′
(m+1)i , and let μm+1 = �b′

m+1/c. Clearly,

ν = (ε0 − N ′εm+1)μ0 + · · · + (εm − N ′εm+1)μm + cεm+1μm+1 + ∑k′
j=m+2

�b j . This completes the proof of the inductive step.
The theorem now immediately follows. �

Proposition 4.6. Every LPS over (W , F ) is equivalent to an LPS over (W , F ) of length at most |F |.

Proof. The argument is essentially the same as that for Proposition 4.4, using the observation that a probability measure
over (W , F ) can be identified with an element of R

|F |; the vector defining the probabilities of the elements in F . I leave
details to the reader. �
Proposition A.9. For the NPS (W , F , ν) constructed in Example 4.10, there is no LPS �μ over (W , F ) such that ν ≈ �μ.

Proof. I start with a straightforward lemma.

Lemma A.10. Given an LPS �μ, there is an LPS �μ′ such that �μ ≈ �μ′ and all the probability measures in �μ′ are distinct.

Proof. Define �μ′ to be the subsequence consisting of all the distinct probability measures in �μ. That is, suppose that
�μ = (μ0,μ1, . . .). Then �μ′ = (μk0 ,μk1 , . . .), where k0 = 0, and, if kα has been defined for all α < β and there exists an
index γ such that μkα �= μγ for all α � β , then kβ is the least index δ such that μkα �= μδ for all α < β . If there is no index
γ such that μγ /∈ {μkα : α < β}, then �μ′ = (μkα : α < β). I leave it to the reader to check that �μ ≈ �μ′ . �

Returning to the proof of Proposition A.9, suppose by way of contradiction that ν ≈ �μ. Without loss of generality,
by Lemma A.10, assume that all the probability measures in �μ are distinct. Clearly Eν(χW ) < Eν(αχ{w1}) if α � 2 and
Eν(χW ) > Eν(αχ{w1}) if α < 2. Since ν ≈ �μ, it must be the case that E �μ(χW ) < E �μ(αχ{w1}) if α � 2 and E �μ(χW ) >

E �μ(αχ{w1}) if α < 2. Since E �μ(χW ) = (1,1, . . .), it follows that if �μ = (μ0,μ1, . . .), it must be the case that μ0(w1) = 1/2
and

μ1(w1) � 1/2. (3)

Similar arguments (comparing χW to χ{w j}) can be used to show that μ0(w j) = 1/2 j and μ1(w2 j−1) � 1/2 j for j =
1,2, . . . . Next, observe that Eν(χ{w1} − 22k−1χ{w2k}) = (2k + 1)ε . Thus,

Eν

(
χ{w1} − 22k−1χ{w2k}

) = Eν

((
2k + 1

)(
χ{w1} − (χW /2)

))
.

It follows that the same relationship must hold if ν is replaced by �μ. That is,

μ1(w1) − 22k−1μ1(w2k) = (
2k + 1

)(
μ1(w1) − (1/2)

)
.

Rearranging terms, this gives

2kμ1(w1) + 22k−1μ1(w2k) = 2k−1 + 1/2,

or

μ1(w1) + 2k−1μ1(w2k) = 1/2 + 1/2k+1. (4)

Thus, μ1(w1) � 1/2 + 1/2k+1 for all k � 1. Putting this together with (3), it follows that μ1(w1) = 1/2. Plugging this into
(4) gives μ1(w2k) = 1/22k . It now follows that μ1 = μ0, contradicting the choice of �μ. �
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Theorem 5.1. FNP F N→P is a bijection from NPS(W , F )/� to Pop(W , F ) and from NPSc(W , F )/� to Popc(W , F ).

Proof. As I said in the main text, the proof that F N→P is an injection is straightforward, and to prove that it is a surjection in
the countably additive case, it suffices to show that F N→P (W , F , ν) = (W , F , F ′,μ), where ν ≈ �μ′ and �μ′ is the countably
additive SLPS such that F S→P ((W , F , �μ′)) = (W , F , F ′,μ). I now do this.

Suppose that F N→P (W , F , ν) = (W , F , F ′
1,μ1). First I show that ν(U ) = 0 iff �μ′(U ) = �0. Let X = χU and Y = χ∅ . Note

that ν(U ) = 0 iff Eν(X) = Eν(Y ) iff E �μ′ (X) = E �μ′ (Y ) iff �μ′(U ) = �0. Thus, F ′
1 = {U : ν(U ) �= 0} = {U : �μ′(U ) �= �0} = F ′ .

Now suppose by way of contradiction that μ �= μ1. Thus, there must exist some V ∈ F , U ∈ F ′ such that μ(V | U ) �=
μ1(V | U ). Let β be the smallest ordinal such that μ′

β(U ) �= 0. It follows that μ′
β(V | U ) �= st(ν(V | U )). We can assume

without loss of generality that μ′
β(V | U ) > st(ν(V | U )). Choose a real number r such that μ′

β(V | U ) > r > st(ν(V | U )).
Then E �μ′ (χV ∩U ) > E �μ′ (rχU ) but Eν(χV ∩U ) < Eν(rχU ). This contradicts the assumption that �μ′ ≈ ν . It follows that
F N→P (W , F , ν) = (W , F , F ′,μ), as desired.

It remains to show that if (W , F , F ′,μ) ∈ Pop(W , F ) − Popc(W , F ), then there is some (W , F , ν) ∈ NPS(W , F ) such
that F N→P (W , F ν) = (W , F , F ′,μ). My proof in this case follows closely the lines of an analogous result proved by McGee
(1994). I provide the details here mainly for completeness.

The proof relies on the following ultrafilter construction of non-Archimedean fields. Given a set S , a filter G on S is a
nonempty set of subsets of F that is closed under supersets (so that if U ∈ G and U ⊆ U ′ , then U ′ ∈ G ), is closed under
finite intersections (so that if U1, U2 ∈ G , then U1 ∩ U2 ∈ G ), and does not contain ∅. An ultrafilter is a maximal filter, that
is, a filter that is not a strict subset of any other filter. It is not hard to show that if U is an ultrafilter on S , then for all
U ⊆ S , either U ∈ U or U ∈ U (Bell and Slomson, 1974).

Suppose F is either R or a non-Archimedean field, J is an arbitrary set, and U is an ultrafilter on J . Define an equivalence
relation ∼U on F J by taking (a j: j ∈ J ) ∼U (b j: j ∈ J ) if { j: a j = b j} ∈ U . Similarly, define a total order �U by taking
(a j: j ∈ J ) �U (b j: j ∈ J ) if { j: a j � b j} ∈ U . (The fact that �U is total uses the fact that for all U ⊆ J , either U ∈ U or
U ∈ U . Note that the pointwise ordering on F J is not total.) Let F J /∼U consist of these equivalence classes. Note that F can
be viewed as a subset of F J /∼U by identifying a ∈ F with the sequence of all a’s.

Define addition and multiplication on F J pointwise, so that, for example, (a j: j ∈ J ) + (b j: j ∈ J ) = (a j + b j: j ∈ J ). It
is easy to check that if (a j: j ∈ J ) ∼U (a′

j: j ∈ J ), then (a j: j ∈ J ) + (b j: j ∈ J ) ∼U (a′
j: j ∈ J ) + (b j: j ∈ J ), and similarly

for multiplication. Thus, the definitions of + and × can be extended in the obvious way to F J /∼U . With these definitions,
it is easy to check that F J /∼U is a field that contains F .

Now given a Popper space (W , F , F ′,μ) and a finite subset A = {U1, . . . , Uk} ⊆ F , let F A be the (finite) algebra
generated by A (that is, the smallest set containing {U1, . . . , Uk, W } that is closed under unions and complement). Let F ′

A =
F A ∩ F ′ . It follows from Theorem 3.1 that there is a finite SLPS �μA over (W , F A) that is mapped to (W , F A, F ′

A′ ,μA) by
F S→P . (Although Theorem 3.1 is stated for finite state spaces W , the proof relies on only the fact that the algebra is finite,
so it applies without change here.) It now follows from Theorem 4.5 that, for each A, there is a nonstandard probability
space (W , F A, νA) with range R(ε) that is equivalent to �μA . By Proposition 4.2, it follows that for U ∈ F ′

A iff νA(U ) = 0.
Moreover, st(νA(V | U )) = μA(V | U ) for U ∈ F ′

A and V ∈ F A .
Let J consist of all finite subsets of F . For a subset A of F , let G A be the subset of 2 J consisting of all sets in J

containing A. Let G = {G ⊆ J : G ⊇ G A for some A ⊆ F }. It is easy to check that G is a filter on J . It is a standard result
that every filter can be extended to an ultrafilter (Bell and Slomson, 1974). Let U be an ultrafilter containing G . By the
construction above, R(ε)/∼U is a non-Archimedean field.

Define ν on (W , F ) by taking ν(U ) = (νA(U ): A ∈ J ), where νA(U ) is taken to be 0 if U /∈ F A . To see that ν is indeed
a nonstandard probability measure with the required properties, note that clearly ν(W ) = 1 (where 1 is identified with the
sequence of all 1’s). Moreover, to see that ν(U )+ν(V ) = ν(U ∪ V ), let AU ,V be the smallest subalgebra containing U and V .
Note that if A ⊃ AU ,V , then νA(U ) + νA(V ) = νA′(U ∪ V ). Since the set of algebras containing AU ,V is an element of the
ultrafilter, the result follows. Similar arguments show that ν(U ) = 0 iff U ∈ F ′ and that st(ν(V | U )) = μ(V | U ) if U ∈ F ′
and V ∈ F . Clearly F N→P (ν) = μ. �
Proposition 5.2. If ν1 ≈ ν2 then ν1 � ν2 .

Proof. Suppose that ν1 ≈ ν2. To show that ν1 � ν2, first suppose that ν1(U ) �= 0 for some U ⊆ W . Then Eν1 (χ∅) < Eν1 (χU ).
Since ν1 ≈ ν2, it must be the case that Eν2 (χ∅) < Eν2 (χU ). Thus, ν2(U ) �= 0. A symmetric argument shows that if ν2(U ) �= 0
then ν1(U ) �= 0. Next, suppose that ν1(U ) �= 0 and ν1(V | U ) = α. Thus, Eν1 (αχU ) = Eν1 (χU∩V ). Since ν1 ≈ ν2, it follows
that Eν2 (αχU ) = Eν2 (χU∩V ), and so ν2(V | U ) = α. Thus, st(ν1(V | U )) = st(ν2(V | U )). Hence, ν1 � ν2, as desired. �
Theorem 6.5. There exists an NPS ν whose range is an elementary extension of the reals such that �μ ≈ ν and X1, . . . , Xn are inde-
pendent with respect to ν iff there exists a sequence �r j , j = 1,2, . . . , of vectors in (0,1)k such that �r j → (0, . . . ,0) as j → ∞, and
X1, . . . , Xn are independent with respect to �μ � �r j for j = 1,2,3, . . . .

Proof. Suppose that there exists an NPS ν whose range is an elementary extension of the reals, �μ ≈ ν , and X1, . . . , Xn are
independent with respect to ν . Using arguments similar in spirit to those the arguments of BBD (1991b, Proposition 2), it
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follows that there exist positive infinitesimals ε1, . . . , εk such that �μ � (ε1, . . . , εk) = ν . It is not hard to show that there
exists a finite set of real-valued polynomials p1, . . . , pN such that p j(ε1, . . . , εk) = 0 for j = 1, . . . , N , and if �r is a vector
of positive reals such that p j(�r) = 0 for j = 1, . . . , N , then X1, . . . , Xn are independent with respect to �μ � �r. Thus, for all
natural numbers m � 1, the range of ν satisfies the first-order property

∃x1 . . .∃xk
(

p1(x1, . . . , xk) = 0 ∧ . . . ∧ pN (x1, . . . , xk) = 0 ∧ 0 < x1 < 1/m ∧ . . . ∧ 0 < xk < 1/m
)
.

Since the range of ν is an elementary extension of the reals, this first-order property holds of the reals as well. Thus, there
exists a sequence �r j of vectors of positive reals converging to �0 such that p j(�r j) = 0 for j = 1, . . . , N .

The converse follows by a straightforward application of compactness in first-order logic (Enderton, 1972). Suppose that
there exists a sequence �r j , j = 1,2, . . . , of vectors in (0,1)k such that �r j → (0, . . . ,0) as j → ∞, and X1, . . . , Xn are inde-
pendent with respect to �μ � �r j for j = 1,2,3, . . . . We now apply the compactness theorem. As I mentioned in the proof of
Proposition 4.6, the compactness theorem says that, given a collection for formulas, if each finite subset has a model, then
so does the whole set. Consider a language with the function symbols + and ×, the binary relation �, a constant symbol
r for each real number r, a unary predicate N (representing the natural numbers), and constant symbols pU for each set
U ∈ F . Intuitively, pU represents ν(U ). Consider the following (uncountable) collection of formulas:

(a) All first-order formulas in this language true of the reals. (This includes, for example, a formula such as ∀x∀y (x + y =
y + x), which says that addition is commutative, as well as formulas such as 2 + 3 = 5 and

√
2 × √

3 = √
6.)

(b) Formulas pU > 0 for U ∈ F ′ and pU = 0 for U ∈ F − F ′ .
(c) Formulas pU + pV = pU∪V if U ∩ V = ∅.
(d) The formula pW = 1.
(e) Formulas of the form p X1=x1 × · · · × p Xn=xn = p X1=x1∩...∩Xn=xn , for all values xi ∈ V (Xi), i = 1, . . . ,n; these formulas say

that X1, . . . , Xn are independent with respect to ν .
(f) For every pair of Y , Y ′ of random variables such that E �μ(Y ) � E �μ(Y ′), a formula that says Eν(Y ) � Eν(Y ′), where

Eν(Y ) and Eν(Y ′) are expressed using the constant symbols pU (where the events U are those of the form Y = y and
Y ′ = y′). Note that this formula is finite, since X and Y are assumed to have finite range. The formula would not be
expressible in first-order logic if X or Y had infinite range.

It is not hard to show that every finite subset of these formulas is satisfiable. Indeed, given a finite subset of formulas,
there must exist some m such that taking pU = �μ � �rm(U ) will work (and interpreting r as the real number r, of course).
The only non-obvious part is showing that we can deal with the formulas in part (f); that we can do so follows from
the proof of Proposition 1 in Blume et al. (1991b), which shows that E �μ(Y ′) > E �μ(Y ) iff there exists some M such that
E �μ��rm (Y ′) > E �μ��rm (Y ) for all m, then E �μ(Y ′) > E �μ(Y ).

Since every finite set of formulas is satisfiable, by compactness, the infinite set is satisfiable. Let ν(U ) be the interpre-
tation of pU in a model satisfying these formulas. Then it is easy to check that ν is an elementary extension of the reals,
ν ≈ �μ, and that X1, . . . , Xn are independent with respect to ν . �
Theorem 6.6. X1, . . . , Xn are strongly independent with respect to the Popper space (W , F , F ′,μ) iff there exists an NPS (W , F , ν)

such that F N→P (W , F , ν) = (W , F , F ′,μ) and X1, . . . , Xn are independent with respect to (W , F , ν).

Proof. It easily follows from Kohlberg and Reny’s (1997, Theorem 2.10) characterization of strong independence that if
X1, . . . , Xn are independent with respect to the NPS (W , F , ν) then X1, . . . , Xn are strongly independent with respect to
F N→P (W , F , ν).

The converse follows using compactness, much as in the proof of Theorem 6.5. Suppose that (W , F , F ′,μ) is a Popper
space and μ j → μ are as required for X1, . . . , Xn to be strongly independent with respect to μ. Consider the same language
as in the proof of Theorem 6.5, and essentially the same collection of formulas, except that the formulas of part (f) are
replaced by

(f′) Formulas of the form (r − 1
n )pV � pU∩V � (r + 1

n )pV for all U , V , r, and n > 0 such that μ(U | V ) = r.

Again, it is easy to see that every finite subset of these formulas is satisfiable. Indeed, given a finite subset of formulas,
there must exist some m such that taking pU = μm(U ) satisfies all the formulas (and interpreting r as the real number r,
of course). By compactness, the infinite set is satisfiable. Let ν(U ) be the interpretation of pU in a model satisfying these
formulas. Then it is easy to check that F L→N (W , F , ν) = (W , F , F ′,μ), and that X1, . . . , Xn are independent with respect
to ν . �
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