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Abstract

Harsanyi (1967�1968) showed that belief hierarchies can be encoded by means of epistemic
models with types. Indeed, for every type within an epistemic model we can derive the full
belief hierarchy it induces. But for one particular belief hierarchy, there are in general many
di¤erent ways of encoding it within an epistemic model. In this paper we give necessary
and su¢ cient conditions such that two types, from two possibly di¤erent epistemic models,
induce exactly the same belief hierarchy. The conditions are relatively easy to check, and
seem relevant both for practical and theoretical purposes.
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1 Introduction

Belief hierarchies play a fundamental role in the modern analysis of games. This seems natural,
as one cannot make a good decision in a game without �rst forming a belief about the opponents�
choices, and in order to form a reasonable belief about the opponents�choices it seems necessary
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to �rst form some belief about the opponents�beliefs about their opponents� choices, and so
on. This naturally leads to the concept of a belief hierarchy, which speci�es what a player
believes about the opponents�choices �his �rst-order belief �what the player believes about
the opponents��rst-order beliefs � his second-order belief �and so on.

To the best of my knowledge, Harsanyi (1962) was the �rst to formally de�ne a belief
hierarchy within the context of a game, although he did so for a very special setting. One
important practical problem with belief hierarchies � and that may also have been a reason
why belief hierarchies entered the game theory stage relatively late �is that these are in�nite
objects, with in�nitely many layers of beliefs. It is thus impossible to explicitly write down a
belief hierarchy, layer by layer, as there are in�nitely many of these. But then, the question
naturally arises: Is there a way to represent belief hierarchies in a compact and convenient way?

Harsanyi (1967�1968), some years after he introduced the notion of a belief hierarchy, gave
a positive and elegant answer to this question. He focused on a setting in which the belief
hierarchies concern the players�beliefs about the opponents�utilities, but his construction has
later been extended to situations where players also hold beliefs about the opponents�choices
�which is the relevant setting for our paper. The construction that Harsanyi proposed was
very simple: For every player we de�ne a set of types, and for every type we de�ne a utility
function, together with a probabilistic belief about the opponents�types. From this very simple
construction we can then derive, for every type, a �rst-order belief about the opponents�utility
functions, a second-order belief about the opponents��rst-order beliefs, and so on. That is, for
every type we can derive a full belief hierarchy on the players�possible utilities in the game.
This construction by Harsanyi was a major step forward, as it allowed us to encode in�nite belief
hierarchies in a very short and convenient fashion.

Harsanyi�s original idea can easily be adapted to a framework where players hold beliefs
about the opponents�choices rather than the opponents�utilities. Indeed, consider for every
player a set of types, and associate to every type a probabilistic belief about the opponents�
choices and types. Then, similarly to Harsanyi�s construction, we can then derive for every type
a full belief hierarchy on the players�choices in the game. This construction, which we call an
epistemic model with types, can thus be viewed as a possible way to encode belief hierarchies.
During the last few decades, it has played a key role in the epistemic analysis of games.

The question we ask in this paper is actually very simple. Consider two epistemic models
with �nitely many types, and for a given player choose one type from each of the two models.
When do these two types induce the same belief hierarchy?

Checking this directly, by explicitly comparing their induced �rst-order beliefs, second-order
beliefs, and so on, may be quite cumbersome as one needs to check for in�nitely many levels
of belief. Instead, we present in Theorem 2 a (�nite) set of necessary and su¢ cient conditions
which are relatively easy to check. We think this theorem has important practical and theoretical
implications. On a practical level, it may help to check whether for a given game, and for two
given epistemic models, two types induce the same belief hierarchy or not. On a more theoretical
level, it may be helpful for investigating the structure of type spaces or for designing proofs.

2



For instance, Theorem 2 can be used to characterize non-redundant epistemic models �which
are models where no two di¤erent types induce the same belief hierarchy. Or, suppose one
attempts to prove that two di¤erent game-theoretic concepts � which work on two di¤erent
epistemic models �eventually generate the same set of belief hierarchies. Then, the necessary
and su¢ cient conditions in Theorem 2 may be very helpful for designing such a proof, as they
provide a way to �travel�from one epistemic model to the other without changing the induced
belief hierarchy.

The outline of this paper is as follows. In Section 2 we formally introduce epistemic models,
and show how to derive a belief hierarchy from a type within a given epistemic model. In Section
3 we state our main result �Theorem 2 �and illustrate it by means of an example. In Section
4 we state some preparatory results which are needed to prove the main result. In Section 5
we give a formal proof of the main result. In Section 6 we investigate what the main theorem
implies for some interesting special cases. In Section 7 we discuss how the main theorem could
be extended to other settings. In Section 8, �nally, we give the proofs for the preparatory results
in Section 4.

2 Belief Hierarchies and Types

In this section we show how belief hierarchies can be encoded by means of an epistemic model
with types, and how every type can be �decoded�by deriving a full belief hierarchy from it.

2.1 From Belief Hierarchies to Types

Consider a �nite static game � = (Ci; ui)i2I where I is the �nite set of players, Ci is the �nite
set of choices for player i; and ui : �j2ICj ! R is player i�s utility function. A belief hierarchy
for player i speci�es a probabilistic belief about the opponents�choices �the �rst-order belief �
a probabilistic belief about the opponents�possible �rst-order beliefs �the second-order belief
� and so on. Following Harsanyi�s (1967�1968) approach, we will encode such in�nite belief
hierarchies by means of an epistemic model with types. In this paper we focus on epistemic
models with �nitely many types, which of course imposes restrictions on the possible belief
hierarchies we can encode. Indeed, there are belief hierarchies which can simply not be encoded
by an epistemic model with �nitely many types. See Section 7 for a discussion of this restriction
to �nite type spaces, and how the main result could possibly be extended to a setting with
in�nitely many types.

De�nition 1 (Epistemic Model) A �nite epistemic model for � is a tuple M = (Ti; bi)i2I
where, for every player i;

(a) Ti is the �nite set of types for player i; and

(b) bi : Ti ! �(C�i � T�i) is a mapping that assigns to every type ti a probabilistic belief
bi(ti) 2 �(C�i � T�i) on the opponents�choice-type combinations.
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Here, �(X) denotes the set of probability distributions on X; for every �nite set X. In our
main result �Theorem 2 �an important role is played by the sets T �(ti); representing the set of
types that �enter type ti�s belief hierarchy�. We will now de�ne these sets T �(ti) formally. To
do so, we �rst recursively de�ne sets of types T 1(ti); T 2(ti); ::: for all types ti in M: To start, let

T 1(ti) := ftig [
h[

j 6=i
ftj 2 Tj j bi(ti)(C�i � ftjg � T�ij) > 0g

i
;

where T�ij = �k2Infi;jgTk: Hence, T 1(ti) contains ti itself and all opponents�types to which ti
assigns positive probability.

Now, suppose that n � 2; and that Tn�1(ti) has been de�ned for all types ti in M: Then,
for every player i; and every type ti 2 Ti; we de�ne

Tn(ti) :=
[

t2Tn�1(ti)
T 1(t):

Finally, we de�ne the set
T �(ti) :=

[
n2N

Tn(ti);

representing the set of types that �enter ti�s belief hierarchy�.
One can easily visualize the de�nition of T �(ti) by a directed graph, where the nodes are

the types in M; and where there is an edge from a type t to another type t0 whenever t assigns
positive probability to t0: Then, Tn(ti) contains precisely those types that can be reached within
at most n steps from ti; and T �(ti) contains those types that can be reached within �nitely many
steps when starting at ti:

2.2 From Types to Belief Hierarchies

In the previous subsection we have introduced an epistemic model as a way to encode belief
hierarchies. We will now show how to �decode�a type within an epistemic model, by deriving
the full belief hierarchy it induces.

Consider a �nite epistemic modelM = (Ti; bi)i2I for �: Then, every type ti withinM induces
an in�nite belief hierarchy

hi(ti) = (h
1
i (ti); h

2
i (ti); :::);

where h1i (ti) is the induced �rst-order belief, h
2
i (ti) is the induced second-order belief, and so on.

We will inductively de�ne, for every n; the n-th order beliefs induced by types ti in M; building
upon the (n � 1)-th order beliefs that have been de�ned in the preceding step. We start by
de�ning the �rst-order beliefs.

For every player i; and every type ti 2 Ti; de�ne the �rst-order belief h1i (ti) 2 �(C�i) by

h1i (ti)(c�i) := bi(ti)(fc�ig � T�i):
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Let
h1i (Ti) := fh1i (ti) j ti 2 Tig � �(C�i)

be the �nite set of �rst-order beliefs for player i induced by types in Ti:
Now, suppose that n � 2; and assume that the beliefs hn�1i (ti) and the sets hn�1i (Ti) have

been de�ned for all players i; and every type ti 2 Ti: For every hn�1i 2 hn�1i (Ti); let

Ti[h
n�1
i ] := fti 2 Ti j hn�1i (ti) = h

n�1
i g:

We de�ne the n-th order beliefs hni (ti) and the sets h
n
i (Ti) as follows. For every type ti 2 Ti; let

hni (ti) 2 �( C�i � hn�1�i (T�i)) be given by

hni (ti)(c�i; h
n�1
�i ) := bi(ti)(fc�ig � T�i[h

n�1
�i ])

for every c�i 2 C�i and every hn�1�i 2 hn�1�i (T�i): Here, h
n�1
�i (T�i) := �j 6=ihn�1j (Tj); and for a

given hn�1�i = (hn�1j )j 6=i in h
n�1
�i (T�i) we de�ne T�i[h

n�1
�i ] := �j 6=iTj [h

n�1
j ]:

By
hni (Ti) := fhni (ti) j ti 2 Tig � �(C�i � hn�1�i (T�i))

we denote the �nite set of n-th order beliefs for player i induced by types in Ti:
Finally, for every type ti 2 Ti; we denote by

hi(ti) := (h
n
i (ti))n2N

the belief hierarchy on the players�choices induced by ti:

3 Main Result

Our main result provides necessary and su¢ cient conditions such that two types, from possibly
di¤erent epistemic models, induce exactly the same belief hierarchy. To state the result formally,
we need the following de�nitions. For two sets A and B; a correspondence f : A� B is an object
that assigns to every a 2 A a nonempty subset f(a) � B: The correspondence f : A � B is
called disjoint when for all a; a0 2 A; either f(a) = f(a0); or f(a)\f(a0) = ;: For every a 2 A; we
denote by [a]f := fa0 2 A j f(a0) = f(a)g the set of elements that induce the same image under
f as a: Moreover, for a given type t�j 2 Tj and a given player i; we de�ne T �i (t�j ) := T �(t�j ) \ Ti;
and T ��i(t

�
j ) := �k 6=iT �k (t�j ): In a similar fashion, we de�ne R�i (r�j ) and R��i(r�j ) for a type r�j 2 Rj :
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Theorem 2 (Main Theorem) Consider a �nite static game � = (Ci; ui)i2I ; and two �nite
epistemic models M = (Ti; bi)i2I and M 0 = (Ri; �i) for �: For a given player j; consider a type
t�j 2 Tj and a type r�j 2 Rj :

Then, t�j and r
�
j induce the same belief hierarchy, if and only if, for every player i there is a

disjoint correspondence
fi : T

�
i (t

�
j )� R�i (r

�
j )

such that r�j 2 fj(t�j ) and

bi(ti)(fc�ig � [t�i]f�i) = �i(ri)(fc�ig � f�i(t�i)) for all ri 2 fi(ti); (1)

for all players i; all types ti 2 T �i (t�j ); all c�i 2 C�i; and all t�i 2 T ��i(t�j ):

Here, f�i : T ��i(t
�
j ) � R��i(r

�
j ) is the induced disjoint correspondence that assigns to every

t�i = (tk)k 6=i in T ��i(t
�
j ) the set �k 6=ifk(tk); which is a subset of R��i(r�j ):

Example. We will now illustrate our main theorem by means of an example. Consider a two-
player game � = (Ci; ui)i2I with choice set C1 = fa; bg for player 1, and choice set C2 = fc; dg
for player 2. Consider the two epistemic models M = (T1; T2; b1; b2) and M 0 = (R1; R2; �1; �2)
in Table 1. Here, b1(t1) = 1

2(c; t2) +
1
2(d; t

0
2) means that type t1 assigns probability

1
2 to the

opponent�s choice-type pair (c; t2); and probability 1
2 to the opponent�s choice-type pair (d; t

0
2):

Similarly for the other types in the table.
We will use our main theorem to show that the types t1 and r01 induce the same belief

hierarchy on choices. Note �rst that T �1 (t1) = T1; T
�
2 (t1) = T2; R

�
1(r

0
1) = R1 and R

�
2(r

0
1) = R2:

De�ne the disjoint correspondences f1 : T �1 (t1)� R�1(r
0
1) and f2 : T

�
2 (t1)� R�2(r

0
1) by

f1(t1) = f1(t
0
1) = fr01; r001g;

f1(t
00
1) = fr1g;

f2(t2) = f2(t
00
2) = fr02g and

f2(t
0
2) = fr2; r002g:

Then, r01 2 f1(t1); and it may be veri�ed that these correspondences f1 and f2 satisfy condition
(1) above. Hence, by Theorem 2, types t1 and r01 induce the same belief hierarchy. By the same
argument, we can actually conclude that the types t1; t01; r

0
1 and r

00
1 all induce the same belief

hierarchy, and that the types t001 and r1 induce the same belief hierarchy.
To see why f1 and f2 satisfy condition (1), note �rst that

[t1]f1 = ft1; t01g; [t001]f1 = ft001g;
[t2]f2 = ft2; t002g; and [t02]f2 = ft02g:
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Epistemic model M = (T1; T2; b1; b2)

T1 = ft1; t01; t001g; T2 = ft2; t02; t002g

b1(t1) =
1
2(c; t2) +

1
2(d; t

0
2)

b1(t
0
1) =

1
6(c; t2) +

1
3(c; t

00
2) +

1
2(d; t

0
2)

b1(t
00
1) =

1
3(c; t

0
2) +

2
3(d; t

00
2)

b2(t2) =
1
4(a; t1) +

1
2(a; t

0
1) +

1
4(b; t

00
1)

b2(t
0
2) =

1
8(a; t1) +

1
8(a; t

0
1) +

3
4(b; t

00
1)

b2(t
00
2) =

1
2(a; t1) +

1
4(a; t

0
1) +

1
4(b; t

00
1)

Epistemic model M 0 = (R1; R2; �1; �2)

R1 = fr1; r01; r001g; R2 = fr2; r02; r002g

�1(r1) =
1
6(c; r2) +

1
6(c; r

00
2) +

2
3(d; r

0
2)

�1(r
0
1) =

1
2(c; r

0
2) +

1
8(d; r2) +

3
8(d; r

00
2)

�1(r
00
1) =

1
2(c; r

0
2) +

3
8(d; r2) +

1
8(d; r

00
2)

�2(r2) =
1
4(a; r

0
1) +

3
4(b; r1)

�2(r
0
2) =

3
4(a; r

0
1) +

1
4(b; r1)

�2(r
00
2) =

1
8(a; r

0
1) +

1
8(a; r

00
1) +

3
4(b; r1)

Table 1: Illustration of the main theorem
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Now, take the type t1 2 T1; the types r01; r001 2 f1(t1); the opponent�s type t02 2 T2; and the
opponent�s choice d: Then,

b1(t1)(fdg � [t02]f2) = b1(t1)(fdg � ft02g) = 1
2 ;

�1(r
0
1)(fdg � f2(t02)) = �1(r

0
1)(fdg � fr2; r002g) = 1

8 +
3
8 =

1
2 ;

�1(r
00
1)(fdg � f2(t02)) = �1(r

00
1)(fdg � fr2; r002g) = 3

8 +
1
8 =

1
2 :

Hence, we may conclude that

b1(t1)(fdg � [t02]f2) = �1(r̂1)(fdg � f2(t02)) for all r̂1 2 f1(t1);

which establishes condition (1) for t1 2 T1; t02 2 T2 and d 2 C2: In the same way, it may be
veri�ed that (1) also holds for every other combination of types and choices. Hence, in this
way it can be checked that the correspondences f1 and f2 indeed satisfy condition (1). So, by
Theorem 2 we may indeed conclude that t1 and r01 induce the same belief hierarchy.

4 Some Preparatory Results

Before we prove Theorem 2 we �rst present some preparatory results that will be useful for the
proof. For the preparatory results we present in this section, assume that � = (Ci; ui)i2I is a
�nite static game, and assume thatM = (Ti; bi)i2I andM 0 = (Ri; �i)i2I are two �nite epistemic
models for �: The proofs of the three lemmas can be found in the proofs section at the end of
this paper. The proof of Corollary 4 is given in the present section, as it is very short.

Our �rst result states that two types which induce the same n-th order belief, also induce
the same (n � 1)-th order belief. As a consequence, two types that share the same n-th order
belief, also share the same (n� 1)-th order belief, the same (n� 2)-th order belief, ..., the same
�rst-order belief. This results seems quite natural as �on an intuitive level �an n-th order belief
is a �more detailed�belief than an (n�1)-th order belief, and hence we should be able to derive
the (n� 1)-th order belief if the n-th order belief is given.

Lemma 3 (Identical n-th order beliefs imply identical (n� 1)-th order beliefs) For
some n � 2; consider a type ti 2 Ti and a type ri 2 Ri with hni (ti) = hni (ri): Then, hn�1i (ti) =
hn�1i (ri):

Despite the fact that this result is quite intuitive, proving this result still requires a non-
trivial piece of work. The reason is that in our setup, the (n� 1)-th order belief cannot directly
be obtained from the n-th order belief by taking a marginal, as is the case in Mertens and
Zamir (1985) and Brandenburger and Dekel (1993). To see this, note that in the Mertens-Zamir
and the Brandenburger-Dekel framework, the space of uncertainty for the n-th order beliefs can
directly be written as the Cartesian product of the space of uncertainty for the (n� 1)-th order
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beliefs and some other set. Therefore, we can immediately derive an (n�1)-th order belief from
an n-th order belief by simply taking the marginal on the space of uncertainty for (n � 1)-th
order beliefs. Such a construction is not possible within our setup, and this makes the proof of
Lemma 3 more di¢ cult than one might maybe expect.

Our next result follows rather easily from the lemma above. It states that for every two
�nite epistemic models, we can always �nd a number n such that two types induce the same
belief hierarchy precisely when they induce the same n-th order belief. Hence, checking the n-th
order belief is su¢ cient for testing whether two types induce the same belief hierarchy or not.
This result plays an important role in proving the �only if�direction of Theorem 2.

Corollary 4 (Identical n-th order beliefs imply identical belief hierarchies) There is
some n � 1 such that for every player i; every ti 2 Ti and ri 2 Ri;

hi(ti) = hi(ri) if and only if hni (ti) = h
n
i (ri):

Proof. Fix a player i: For every n � 1 de�ne the set

Ani := f(ti; ri) 2 Ti �Ri j hni (ti) = hni (ri)g;

and let
A1i := \n2NAni = f(ti; ri) 2 Ti �Ri j hi(ti) = hi(ri)g:

By Lemma 3 it follows that Ani � An�1i for all n � 2: Hence, as both Ti and Ri are �nite, there
must be some number ni such that A

ni
i = A1i : This implies that, for every ti 2 Ti and ri 2 Ri;

hi(ti) = hi(ri) if and only if h
ni
i (ti) = hnii (ri): If we set n := maxfni j i 2 Ig; the proof is

complete. �

Our following result states that, whenever two types ti and ri are equivalent �in the sense
of inducing the same belief hierarchy �then every type that enters ti�s belief hierarchy must be
equivalent to a type that enters ri�s belief hierarchy. Also this result is rather intuitive: Consider
two types ti and ri that are equivalent, and some type t0 that enters ti�s belief hierarchy. Then,
ti must deem possible some type that deems possible some type ... that deems possible some
type that deems possible the type t0: In terms of belief hierarchies, this means that ti deems
possible the event that some other player deems possible the event that ... that some other
player deems possible the event that his opponent has the belief hierarchy induced by t0: As
ri holds the same belief hierarchy as ti; also ri must deem possible the event that some other
player deems possible the event that ... that some other player deems possible the event that
his opponent has the belief hierarchy induced by t0: In particular, there must be a type entering
ri�s belief hierarchy that induces the same belief hierarchy as t0 does �exactly what we have
to show. Proving this intuitive result still requires some hard work, as the reader will see. But
basically the proof provides a formalization of the intuitive argument above. For the purposes
of this paper, this result will be crucial for proving the �only if�direction in Theorem 2.
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Lemma 5 (Equivalent types deem possible equivalent opponents�types) Consider a
type t�j 2 Ti and a type r�j 2 Rj with hj(t�j ) = hj(r

�
j ): Then, for every player i; and every

ti 2 T �i (t�j ); there is some ri 2 R�i (r�j ) with hi(ti) = hi(ri):

Our last preparatory result is a technical property that follows from condition (1) in Theorem
2.

Lemma 6 (Consequence of condition (1)) Consider a �xed type t�j 2 Tj : For every player
i; let fi : T �i (t

�
j ) � R�i (r

�
j ) be a disjoint correspondence such that condition (1) in Theorem 2

is satis�ed. Then, for every player i; every ti 2 T �i (t�j ) and every ri 2 fi(ti); the belief �i(ri)
only assigns positive probability to opponents�type combinations that are in f�i(t�i) for some
t�i 2 T ��i(t�j ):

With these preparatory results at hand, we are now fully equipped to prove our main theorem.

5 Proof of the Main Result

In this section we give a formal proof of Theorem 2.

(If) Suppose �rst that for every player i there is a disjoint correspondence fi : T �i (t
�
j ) �

R�i (r
�
j ); with r

�
j 2 fj(t�j ); such that these correspondences satisfy condition (1). We show that

hj(t
�
j ) = hj(r

�
j ): In fact, we will show for every player i; every ti 2 T �i (t�j ) and every ri 2 fi(ti);

that hi(ti) = hi(ri): In order to show the latter, we prove, by induction on n; that for every
player i; every ti 2 T �i (t�j ) and every ri 2 fi(ti); we have that hni (ti) = hni (ri):

Consider �rst the case n = 1: Take some ti 2 T �i (t�j ) and some ri 2 fi(ti): We will show that
h1i (ti) = h

1
i (ri):

By de�nition, h1i (ti) and h
1
i (ri) are both in �(C�i): We de�ne [T

�
�i(t

�
j )]f�i := f[t�i]f�i j

t�i 2 T ��i(t�j )g:We then have, for every c�i 2 C�i;

h1i (ti)(c�i) = bi(ti)(fc�ig � T�i)
= bi(ti)(fc�ig � T ��i(t�j ))

=
X

[t�i]f�i2[T
�
�i(t

�
j )]f�i

bi(ti)(fc�ig � [t�i]f�i)

=
X

[t�i]f�i2[T
�
�i(t

�
j )]f�i

�i(ri)(fc�ig � f�i(t�i))

= �i(ri)(fc�ig �R�i)
= h1i (ri)(c�i);

which implies that h1i (ti) = h
1
i (ri): Here, the second equality follows from the observation that

ti only assigns positive probability to opponents�type combinations in T ��i(t
�
j ); as ti 2 T �i (t�j ):
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The third equality follows from the fact that T ��i(t
�
j ) is the disjoint union of the sets [t�i]f�i

where [t�i]f�i 2 [T ��i(t�j )]f�i . The fourth equality follows from condition (1). The �fth equality
follows from Lemma 6, which states that �i(ri) only assigns positive probability to opponents�
type combinations r�i which are in some set f�i(t�i) for some [t�i]f�i 2 [T ��i(t�j )]f�i ; and the
fact that f�i is a disjoint correspondence. This completes the induction start, for n = 1:

Consider now some n � 2 and suppose, by the induction assumption, that for every player
i; every ti 2 T �i (t�j ) and every ri 2 fi(ti); we have that hn�1i (ti) = hn�1i (ri): This implies that
hn�1�i (t

0
�i) = h

n�1
�i (t�i) for every t

0
�i 2 [t�i]f�i : To see this, let r�i 2 f�i(t�i); and consider some

t0�i 2 [t�i]f�i : Then, as f�i(t0�i) = f�i(t�i); it follows that r�i 2 f�i(t0�i): By the induction
assumption, we thus have that hn�1�i (t

0
�i) = h

n�1
�i (r�i) = h

n�1
�i (t�i): As a direct consequence, it

holds for every hn�1�i 2 hn�1�i [T�i] that

T ��i(t
�
j ) \ T�i[hn�1�i ] =

[
[t�i]f�i2[T

�
�i(t

�
j )]f�i :h

n�1
�i (t�i)=h

n�1
�i

[t�i]f�i ; (2)

where this union is disjoint,
We will now show that hni (ti) = h

n
i (ri); for every ti 2 T �i (t�j ) and every ri 2 fi(ti): By con-

struction, we have that hni (ti) 2 �(C�i � hn�1�i (T
�
�i(t

�
j ))) and h

n
i (ri) 2 �(C�i � hn�1�i (R

�
�i(r

�
j )));

where
hn�1�i (T

�
�i(t

�
j )) = �k 6=ifhn�1k (tk) j tk 2 T �k (t�j )g;

and similarly for hn�1�i (R
�
�i(r

�
j )):

For every c�i 2 C�i and every hn�1�i 2 hn�1�i (T
�
�i(t

�
j )) we have

hni (ti)(c�i; h
n�1
�i ) = bi(ti)(fc�ig � T�i[h

n�1
�i ])

= bi(ti)(fc�ig � (T ��i(t�j ) \ T�i[hn�1�i ]))

=
X

[t�i]f�i2[T
�
�i(t

�
j )]f�i :h

n�1
�i (t�i)=h

n�1
�i

bi(ti)(fc�ig � [t�i]f�i)

=
X

[t�i]f�i2[T
�
�i(t

�
j )]f�i :h

n�1
�i (t�i)=h

n�1
�i

�i(ri)(fc�ig � f�i(t�i))

= �i(ri)(fc�ig �R�i[hn�1�i ])

= hni (ri)(c�i; h
n�1
�i );

which implies that hni (ti) = hni (ri) for all ri 2 fi(ti): Here, the second equality follows from
the fact that bi(ti) only assigns positive probability to opponents�type combinations in T ��i(t

�
j );

as ti 2 T �i (t�j ): The third equality follows from (2). The fourth equality follows from condition
(1). The �fth equality follows from Lemma 6, which states that �i(ri) only assigns positive
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probability to opponents�type combinations r�i which are in some set f�i(t�i) for some [t�i]f�i 2
[T ��i(t

�
j )]f�i ; and the induction assumption, which implies that h

n�1
�i (r�i) = hn�1�i (t�i) for all

t�i 2 T ��i(t�j ) and all r�i 2 f�i(t�i):
Hence, we have shown that hni (ti) = h

n
i (ri) for all ti 2 T �i (t�j ) and all ri 2 fi(ti): By induction

on n; we may conclude that hi(ti) = hi(ri) for all players i; all ti 2 T �i (t�j ) and all ri 2 fi(ti): In
particular, since r�j 2 fj(t�j ); we may conclude that hj(t�j ) = hj(r�j ); which was to show.

(Only if) Suppose now that hj(t�j ) = hj(r
�
j ): We prove that for every player i there is a

disjoint correspondence fi : T �i (t
�
j )� R�i (r

�
j ); with r

�
j 2 fj(t�j ); such that these correspondences

satisfy condition (1).
As hj(t�j ) = hj(r

�
j ); we know by Lemma 5 that for every player i; and every ti 2 T �i (t�j ); there

is at least one ri 2 R�i (r�j ) with hi(ti) = hi(ri): For every player i; let fi : T �i (t�j ) � R�i (r
�
j ) be

the correspondence given by

fi(ti) := fri 2 R�i (r�j ) j hi(ri) = hi(ti)g

for every ti 2 T �i (t�j ): Then, by the insight above, fi(ti) is non-empty for every ti 2 T �i (t�j ):
Moreover, for every ti; t0i 2 T �i (t�j ) either fi(ti) = fi(t0i) or fi(ti) \ fi(t0i) = ;: So, fi is a disjoint
correspondence. Note also that r�j 2 fj(t�j ) since hj(r�j ) = hj(t�j ):

It remains to prove that these correspondences fi satisfy the condition (1).

By Corollary 4, there is some n � 1 such that, for every player i; every ti 2 Ti and every
ri 2 Ri;

hi(ti) = hi(ri) if and only if hni (ti) = h
n
i (ri):

Now, choose n � 1 in this way. Then, for every t�i 2 T ��i(t�j ) we have that

[t�i]f�i = ft0�i 2 T ��i(t�j ) j f�i(t0�i) = f�i(t�i)g
= ft0�i 2 T ��i(t�j ) j h�i(t0�i) = h�i(t�i)g
= ft0�i 2 T ��i(t�j ) j hn�i(t0�i) = hn�i(t�i)g: (3)

Now, choose some ti 2 T �i (t�j ), some t�i 2 T ��i(t�j ); and some ri 2 fi(ti). As, by construction,
fi(ti) := fr0i 2 R�i (r�j ) j hi(r0i) = hi(ti)g; it follows that hi(ri) = hi(ti): For every c�i 2 C�i; we
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have that

bi(ti)(fc�ig � [t�i]f�i) = bi(ti)(fc�ig � ft0�i 2 T ��i(t�j ) j hn�i(t0�i) = hn�i(t�i)g)
= bi(ti)(fc�ig � ft0�i 2 T�i j hn�i(t0�i) = hn�i(t�i)g)
= bi(ti)(fc�ig � T�i[hn�i(t�i)])
= hn+1i (ti)(c�i; h

n
�i(t�i))

= hn+1i (ri)(c�i; h
n
�i(t�i))

= �i(ri)(fc�ig �R�i[hn�i(t�i)])
= �i(ri)(fc�ig � fr�i 2 R�i j hn�i(r�i) = hn�i(t�i)g)
= �i(ri)(fc�ig � fr�i 2 R�i j h�i(r�i) = h�i(t�i)g)
= �i(ri)(fc�ig � fr�i 2 R��i(r�j ) j h�i(r�i) = h�i(t�i)g)
= �i(ri)(fc�ig � f�i(t�i))

which establishes condition (1). Here, the �rst equality follows from (3). The second equality
follows from the observation that bi(ti) only assigns positive probability to opponents� type
combinations in T ��i(t

�
j ); since ti 2 T �i (t

�
j ): The third equality follows from the de�nition of

T�i[hn�i(t�i)]: The fourth equality follows from the de�nition of hn+1i (ti): The �fth equality
follows from the observation above that hi(ri) = hi(ti); which implies that hn+1i (ri) = h

n+1
i (ti):

The sixth equality follows from the de�nition of hn+1i (ri): The seventh equality follows from
the de�nition of R�i[hn�i(t�i)]: The eighth equality follows from the fact that, by the choice
of n; hn�i(r�i) = hn�i(t�i) if and only if h�i(r�i) = h�i(t�i): The nineth equality follows from
the observation that �i(ri) only assigns positive probability to opponents�type combinations in
R��i(r

�
j ); as ri 2 R�i (r�j ): The tenth equality follows from the fact that f�i(t�i) = fr�i 2 R�i j

h�i(r�i) = h�i(t�i)g: The proof is hereby complete. �

6 Special Cases

In this section we will discuss the implications of our main result for some interesting special
cases. We �rst look at the case where two di¤erent types within an epistemic model always
induce di¤erent belief hierarchies, and afterwards we discuss the case where we compare two
types from the same epistemic model.

6.1 Non-Redundant Type Spaces

Say that an epistemic model M = (Ti; bi)i2I is non-redundant if di¤erent types induce di¤erent
belief hierarchies. That is, for every player i; and every two di¤erent types ti; t0i 2 Ti; we
have that hi(ti) 6= hi(t

0
i): Now, consider a special setting in which the two epistemic models
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M = (Ti; bi)i2I and M 0 = (Ri; �i)i2I in Theorem 2 are non-redundant. Suppose we �nd some
correspondences fi which satisfy condition (1). Then, we know from the proof of Theorem 2
that for every ti 2 T �i (t�j ); all the types in fi(ti) induce the same belief hierarchy as ti: However,
as both epistemic models are non-redundant, it must be the case that (a) fi(ti) only contains
one type, and (b) that there is no other t0i 2 T �i (t�j ) with fi(t0i) = fi(ti): This means that fi must
be a one-to-one function from T �i (t

�
j ) to R

�
i (r

�
j ); which maps every ti 2 T �i (t�j ) to a single type

fi(ti) in R�i (r
�
j ); and which maps di¤erent types in T

�
i (t

�
j ) to di¤erent types in R

�
i (r

�
j ): We thus

obtain the following result.

Corollary 7 (Non-Redundant Type Spaces) Consider a �nite static game � = (Ci; ui)i2I ;
and two non-redundant �nite epistemic models M = (Ti; bi)i2I and M 0 = (Ri; �i)i2I for �: For
a given player j; consider a type t�j 2 Tj and a type r�j 2 Rj :

Then, t�j and r
�
j induce the same belief hierarchy, if and only if, for every player i there is a

one-to-one function
fi : T

�
i (t

�
j )! R�i (r

�
j )

such that fj(t�j ) = r
�
j and

bi(ti)(c�i; t�i) = �i(fi(ti))(c�i; f�i(t�i)) (4)

for all players i; all types ti 2 T �i (t�j ); all c�i 2 C�i; and all t�i 2 T ��i(t�j ):

The main theorem can also be applied to other special cases of this kind. Consider, for
instance, a setting where the epistemic model M is redundant, but where M 0 is non-redundant.
Then, the correspondences fi from Theorem 2 are actually functions from T �i (t

�
j ) to R

�
i (r

�
j ) �that

is, the image sets fi(ti) are single-valued �but these functions fi will no longer be one-to-one.
The analogue to condition (1) would then state that

bi(ti)(c�i; [t�i]f�i) = �i(fi(ti))(c�i; f�i(t�i));

where [t�i]f�i = ft0�i 2 T ��i(t�j ) j f�i(t0�i) = f�i(t�i)g:

6.2 Two Types Within the Same Epistemic Model

In Theorem 2 there is nothing that prevents us from choosing the second epistemic model, M 0;
equal to the �rst one, M: In that case, we would be checking whether two types t�j and r

�
j within

the same epistemic model M = (Ti; bi)i2I would induce the same belief hierarchy or not.
Now, if T �(t�j ) 6= T �(r�j ); it would be as if we would still be considering two di¤erent epistemic

models. To see this, note that the restriction of M to T �(t�j ) is an epistemic model by itself,

since T �(t�j ) is belief-closed, and so is the restriction of M to T �(r�j ): Let M̂ be the restriction

of M to T �(t�j ); and M̂
0 the restriction of M to T �(r�j ): Then, the two models M̂ and M̂ 0 would
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be di¤erent since T �(t�j ) 6= T �(r�j ). As Theorem 2 and its proof only depend on M̂ and M̂ 0; it
would indeed be as if we would apply Theorem 2 to two di¤erent epistemic models.

So, let us concentrate on the special case where M =M 0 and T �(t�j ) = T
�(r�j ): What would

Theorem 2 imply for that case? Suppose that for every player i we have a correspondence
fi : T

�
i (t

�
j ) � R�i (r

�
j ) such that these correspondences satisfy condition (1) in Theorem 2. As

R�i (r
�
j ) = T

�
i (t

�
j ); these would be correspondences from T �i (t

�
j ) to itself.

By Theorem 2, we know that condition (1) implies that hj(t�j ) = hj(r
�
j ): Now, de�ne for

every player i a new correspondence Pi : T �i (t
�
j )� T �i (t

�
j ) by

Pi(ti) = ft0i 2 T �i (t�j ) j hi(t0i) = hi(ti)g:

Then, we know from the proof of Theorem 2 that these correspondences Pi satisfy condition (1)
as well. Moreover, as hj(t�j ) = hj(r

�
j ); we conclude that r

�
j 2 Pj(t�j ):

Now, it can easily be veri�ed that the collection of sets fPi(ti) j ti 2 T �i (t
�
j )g actually

corresponds to a partition of the set T �i (t
�
j ); with ti 2 Pi(ti) for every ti 2 T �i (t

�
j ): So, the

correspondence Pi actually is a partition, where Pi(ti) denotes the partition element to which ti
belongs.

Moreover, for every ti 2 T �i (t�j ) we have, by de�nition, that

[ti]Pi = ft0i 2 T �i (t�j ) j Pi(t0i) = Pi(ti)g = Pi(ti);

since Pi is a partition. But then, condition (1) is equivalent to stating that

bi(ti)(fc�ig � P�i(t�i)) = bi(t0i)(fc�ig � P�i(t�i)) for all t0i 2 Pi(ti); (5)

where P�i(t�i) := �k 6=iPk(tk) for every t�i = (tk)k 6=i in T ��i(t�j ):
So, the conclusion is that, whenever there are correspondences fi that satisfy condition (1),

then there are also partitions Pi of the sets T �i (t
�
j ) that satisfy condition (5). The converse is

also true: If there are partitions Pi that satisfy (5), then these partitions Pi are, in particular,
correspondences that satisfy condition (1). We therefore arrive at the following result.

Corollary 8 (Types Within the Same Epistemic Model) Consider a �nite static game
� = (Ci; ui)i2I ; and a �nite epistemic model M = (Ti; bi)i2I for �: For a given player j; consider
two types t�j ; r

�
j 2 Tj with T �(t�j ) = T �(r�j ):

Then, t�j and r
�
j induce the same belief hierarchy, if and only if, for every player i there is a

partition Pi of the set T �i (t
�
j ) such that r

�
j 2 Pj(t�j ) and

bi(ti)(fc�ig � P�i(t�i)) = bi(t0i)(fc�ig � P�i(t�i)) for all t0i 2 Pi(ti)

for all players i; all types ti 2 T �i (t�j ); all c�i 2 C�i; and all t�i 2 T ��i(t�j ):
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So, the necessary and su¢ cient condition in this case reads as follows: Two types t�j and r
�
j

induce the same belief hierarchy precisely when we are able to partition the type sets T �i (t
�
j ) into

equivalence classes such that (a) t�j and r
�
j are in the same equivalence class, and (b) di¤erent

types within the same equivalence class always hold the same belief on the opponents�choices
and the opponents�equivalence classes of types.

7 Possible Extensions

My conjecture is that Theorem 2 can be extended in various di¤erent directions, some of which
I will discuss now.

In�nite type spaces. An important restriction we impose in the present framework is that
the epistemic models contain �nitely many types only.

In fact, what we really need for Theorem 2 to work is that the sets T �(t�j ) and R
�(r�j ) �

containing the types that enter t�j�s belief hierarchy and r
�
j�s belief hierarchy �are �nite. So,

even if the epistemic model M itself contains in�nitely many types, Theorem 2 would still be
valid as long as T �(t�j ) and R

�(r�j ) contain �nitely many types only. Also the proof would remain
unchanged in this case.

To see this, note that the restriction of M to T �(t�j ) is an epistemic model itself, since T
�(t�j )

is a belief-closed subspace ofM: By this, we mean that every type in T �(t�j ) only assigns positive
probability to opponents�types that are in in T �(t�j ) as well. In fact, T

�(t�j ) is the smallest belief-
closed subspace of M that contains the type t�j : Similarly, also the restriction of M

0 to R�(r�j )
is an epistemic model, by the same arguments. But then, instead of considering the whole
epistemic models M and M 0; we could just consider their restrictions to T �(t�j ) and R

�(r�j ),
which are �nite epistemic models. As Theorem 2 and the proof take place entirely within these
subspaces T �(t�j ) and R

�(r�j ); Theorem 2 would still be valid in this case.
But what happens if we allow T �(t�j ) or R

�(r�j ) to contain in�nitely many types? Can we
then still obtain a characterization result similar to Theorem 2. I believe so, but certain proof
techniques in the present paper will no longer work, as they heavily depend on the assumption
that T �(t�j ) and R

�(r�j ) are �nite. For instance, Corollary 4 �which plays an important role in
the proof �will no longer hold in that case, even if we would restrict attention to the epistemic
submodels induced by T �(t�j ) and R

�(t�j ). Moreover, topological issues start playing a role when
we allow T �(t�j ) and R

�(r�j ) to be in�nite, especially when these sets are not countable.
But how severe is the restriction that T �(t�j ) and R

�(r�j ) must be �nite? This, of course,
depends on the purpose one has in mind. It is well-known that many concepts in game theory,
like rationalizability (Bernheim (1984), Pearce (1984)), common belief in rationality (Branden-
burger and Dekel (1987), Tan and Werlang (1988)), Nash equilibrium (Nash (1950, 1951)), the
Dekel-Fudenberg procedure (Dekel and Fudenberg (1990)), proper rationalizability (Schuhmacher
(1999), Asheim (2001)) and common belief in future rationality (Perea (2014)) can be charac-
terized by means of �nite epistemic models. Perea (2012) shows that even concepts like iterated
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assumption of rationality (Brandenburger, Friendenberg and Keisler (2008)) and common strong
belief in rationality (Battigalli and Siniscalchi (2002)), which are originally de�ned within com-
plete �and hence in�nite �type spaces, can also be characterized within �nite epistemic models.
Therefore, �nite epistemic models would in principle su¢ ce if the purpose is to investigate any
of these concepts. But there may be other scenarios where in�nite epistemic models turn out to
be indispensable. For these scenarios it would then be crucial to have an analogue of Theorem
2 for the case where T �(t�j ) and R

�(r�j ) are in�nite.

Finite belief hierarchies. In many situations of interest, it may simply be too demanding to
require that players hold in�nitely many levels of belief. It is therefore important to model type
spaces in which certain types only hold beliefs up to a certain level n: See Kets (2010, 2013) and
Heifetz and Kets (2013) for a thorough analysis of this phenomenon. An interesting question
is whether Theorem 2 can be extended to such settings where some types only induce a �nite
belief hierarchy. In particular, consider two epistemic models M and M 0 containing types with
a �nite belief hierarchy, and consider two types, t�j in M and r�j in M

0; which only hold beliefs
up to some level n: Can we �nd necessary and su¢ cient conditions such that t�j and r

�
j induce

exactly the same (�nite) belief hierarchy? I believe this may be an interesting problem to be
addressed in future research.

Beliefs about other parameters. The belief hierarchies and the epistemic models in this paper
concern only the players�beliefs about the choices in the game. But what if we also wish to
model beliefs about other parameters in the game, for instance beliefs about the opponents�
utilities? Theorem 2 can easily be adapted to such an alternative structure, simply by replacing
the set of opponents�choices �which now serves as the primary space of uncertainty for a player
�by a di¤erent set which includes the opponents�utilities, or any other parameters one wishes
to include. As far as I can see, the proof would look exactly the same, as long as one keeps the
epistemic models �nite.

Alternative notions of belief. One could also try to extend Theorem 2 to more general
notions of belief, such as lexicographic beliefs (Blume, Brandenburger and Dekel (1991a, 1991b))
and conditional beliefs in dynamic games (Ben-Porath (1997), Battigalli and Siniscalchi (1999,
2002)). If one keeps the epistemic models �nite, I expect that a similar result �and a similar
proof �should be possible for these settings as well.

Kripke-Aumann structures. Epistemic models with types are not the only way to encode
belief hierarchies. One can also use models with states of the world, à la Kripke (1963) and
Aumann (1976), to represent belief hierarchies. My feeling is that Theorem 2 can be adapted
to such models as well.
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8 Proofs

Proof of Lemma 3. We prove the statement by induction on n: Consider �rst the case where
n = 2:

Take two types ti 2 Ti and ri 2 Ri with h2i (ti) = h2i (ri): We show that h1i (ti) = h1i (ri):
Remember that h1i (ti) and h

1
i (ri) are both in �(C�i). For every c�i 2 C�i;

h1i (ti)(c�i) = bi(ti)(fc�ig � T�i)
=

X
h1�i2h1�i(T�i)[h1�i(R�i)

bi(ti)(fc�ig � T�i[h1�i])

=
X

h1�i2h1�i(T�i)[h1�i(R�i)

h2i (ti)(c�i; h
1
�i)

=
X

h1�i2h1�i(T�i)[h1�i(R�i)

h2i (ri)(c�i; h
1
�i)

=
X

h1�i2h1�i(T�i)[h1�i(R�i)

�i(ri)(fc�ig �R�i[h1�i])

= �i(ri)(fc�ig �R�i)
= h1i (ri)(c�i);

which implies that h1i (ti) = h
1
i (ri): Here, the fourth equality follows from the assumption that

h2i (ti) = h
2
i (ri):

Take now some n � 3; and suppose that the statement is true for n � 1; for all players
i: Consider some type ti 2 Ti and some type ri 2 Ri with hni (ti) = hni (ri): We show that
hn�1i (ti) = h

n�1
i (ri):

Let
T�i(ti) := ft�i 2 T�i j bi(ti)(C�i � ft�ig) > 0g

be the set of opponents�type combinations to which ti assigns positive probability. Similarly,
we de�ne R�i(ri): To show that hn�1i (ti) = h

n�1
i (ri); we �rst prove that

hn�1�i (T�i(ti)) = h
n�1
�i (R�i(ri)); (6)

and, for every hn�1�i 2 hn�1�i (T�i);

hn�2�i (T�i[h
n�1
�i ]) = h

n�2
�i (R�i[h

n�1
�i ]) = fh

n�2
�i g (7)

for some hn�2�i 2 hn�2�i (T�i):Here, h
n�1
�i (T�i(ti)) = fh

n�1
�i (t�i) j t�i 2 T�i(ti)g and h

n�2
�i (T�i[h

n�1
�i ]) =

fhn�2�i (t�i) j t�i 2 T�i[h
n�1
�i ]g; and similarly for R�i:
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We �rst show (6). By de�nition, for every hn�1�i 2 hn�1�i (T�i);

hni (ti)(C�i � fhn�1�i g) = bi(ti)(C�i � T�i[hn�1�i ])

= bi(ti)(C�i � ft�i 2 T�i j hn�1�i (t�i) = h
n�1
�i g)

= bi(ti)(C�i � ft�i 2 T�i(ti) j hn�1�i (t�i) = h
n�1
�i g); (8)

where the third equality follows from the fact that bi(ti) only assigns positive probability to
types in T�i(ti): In fact, bi(ti) assigns positive probability precisely to those types that are in
T�i(ti): Hence, it follows from (8) that hni (ti)(C�i � fhn�1�i g) > 0 if and only if there is some
t�i 2 T�i(ti) with hn�1�i (t�i) = h

n�1
�i ; which is the case precisely when h

n�1
�i 2 hn�1�i (T�i(ti)):

In a similar way, it follows that hni (ri)(C�i�fhn�1�i g) > 0 if and only if h
n�1
�i 2 hn�1�i (R�i(ri)):

Since, by the induction assumption, hni (ti) = h
n
i (ri); it follows that h

n�1
�i (T�i(ti)) = h

n�1
�i (R�i(ri));

and hence (6) holds.
We now prove (7). We �rst show that hn�2�i (T�i[h

n�1
�i ]) = fh

n�2
�i g for some h

n�2
�i 2 hn�2�i (T�i):

Take two type combinations t�i; t0�i 2 T�i[hn�1�i ]: That is, h
n�1
�i (t�i) = h

n�1
�i (t

0
�i) = h

n�1
�i : Then,

by the induction assumption, it follows that hn�2�i (t�i) = hn�2�i (t
0
�i): So, all type combinations

in T�i[hn�1�i ] induce the same combination of (n � 1)-th order beliefs, which we call h
n�2
�i : So,

hn�2�i (T�i[h
n�1
�i ]) = fh

n�2
�i g:

Next we show that hn�2�i (R�i[h
n�1
�i ]) = fhn�2�i g as well. Take some r�i 2 R�i[h

n�1
�i ] and

some t�i 2 T�i[hn�1�i ]: As h
n�2
�i (T�i[h

n�1
�i ]) = fhn�2�i g; it follows that h

n�2
�i (t�i) = hn�2�i : Since

hn�1�i (r�i) = hn�1�i = hn�1�i (t�i); it follows by the induction assumption that h
n�2
�i (r�i) =

hn�2�i (t�i) = h
n�2
�i : So, we may conclude that h

n�2
�i (R�i[h

n�1
�i ]) = fh

n�2
�i g: We have thus shown

(7).
We now prove that hn�1i (ti) = hn�1i (ri): By (7) we know that for every hn�1�i 2 hn�1�i (T�i)

there is some hn�2�i 2 hn�2�i (T�i) with h
n�2
�i (T�i[h

n�1
�i ]) = fh

n�2
�i g: For every h

n�2
�i 2 hn�2�i (T�i(ti));

we de�ne

hn�1�i (T�i(ti) j h
n�2
�i ) := fh

n�1
�i 2 hn�1�i (T�i(ti)) j h

n�2
�i (T�i[h

n�1
�i ]) = fh

n�2
�i gg:

In the same way, we de�ne

hn�1�i (R�i(ri) j h
n�2
�i ) := fh

n�1
�i 2 hn�1�i (R�i(ri)) j h

n�2
�i (R�i[h

n�1
�i ]) = fh

n�2
�i gg:

By (6) and (7) it immediately follows that hn�1�i (T�i(ti) j h
n�2
�i ) = h

n�1
�i (R�i(ri) j h

n�2
�i ):

Moreover, for every hn�2�i 2 hn�2�i (T�i);

T�i[h
n�2
�i ] \ T�i(ti) =

[
hn�1�i 2hn�1�i (T�i(ti) j hn�2�i )

T�i[h
n�1
�i ] \ T�i(ti): (9)
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So, for every c�i 2 C�i and hn�2�i 2 hn�2�i (T�i);

hn�1i (ti)(c�i; h
n�2
�i ) = bi(ti)(fc�ig � T�i[hn�2�i ])

= bi(ti)(fc�ig � (T�i[hn�2�i ] \ T�i(ti))

=
X

hn�1�i 2hn�1�i (T�i(ti) j hn�2�i )

bi(ti)(fc�ig � (T�i[hn�1�i ] \ T�i(ti))

=
X

hn�1�i 2hn�1�i (T�i(ti) j hn�2�i )

bi(ti)(fc�ig � T�i[hn�1�i ])

=
X

hn�1�i 2hn�1�i (T�i(ti) j hn�2�i )

hni (ti)(c�i; h
n�1
�i )

=
X

hn�1�i 2hn�1�i (T�i(ti) j hn�2�i )

hni (ri)(c�i; h
n�1
�i )

=
X

hn�1�i 2hn�1�i (R�i(ri) j hn�2�i )

hni (ri)(c�i; h
n�1
�i )

= hn�1i (ri)(c�i; h
n�2
�i );

which implies that hn�1i (ti) = h
n�1
i (ri): Here, the second equality follows from the fact that bi(ti)

only assigns positive probability to type combinations in T�i(ti): The third equality follows from
(9). The fourth equality follows, again, from the fact that bi(ti) only assigns positive probability
to type combinations in T�i(ti): The �fth equality follows from the de�nition of hni (ti): The sixth
equality follows from the assumption that hni (ti) = h

n
i (ri): The seventh equality follows from the

observation above that hn�1�i (T�i(ti) j h
n�2
�i ) = h

n�1
�i (R�i(ri) j h

n�2
�i ): The eighth equality follows

from mimicking the �rst �ve equalities, in reverse order, to

=
X

hn�1�i 2hn�1�i (R�i(ri) j hn�2�i )

hni (ri)(c�i; h
n�1
�i ):

By induction on n; the proof is complete. �

Proof of Lemma 5. For every player i and every m � 1; let Tmi (t�j ) := Tm(t�j )\ Ti: Similarly,
we de�ne Rmi (r

�
j ): We prove, by induction on m; that for every player i; and every ti 2 Tmi (t�j );

there is some ri 2 Rmi (r�j ) with hi(ti) = hi(ri): From Corollary 4 we know that there is some
n � 1 such that, for all players i; for every ti 2 Ti and ri 2 Ri;

hi(ti) = hi(ri) if and only if hni (ti) = h
n
i (ri): (10)

So, it is su¢ cient to show that for every ti 2 Tmi (r�j ) there is some ri 2 Rmi (r�j ) with hni (ti) =
hni (ri):
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Consider �rst the case where m = 1: By de�nition, T 1j (t
�
j ) = ft�jg and R1j (r�j ) = fr�jg: As, by

assumption, hj(t�j ) = hj(r
�
j ); the statement holds for T

1
j (t

�
j ) and R

1
j (r

�
j ):

Take now some arbitrary player i 6= j: Then, by de�nition,

T 1i (t
�
j ) = fti 2 Ti j bj(t�j )(C�j � ftig � T�ij) > 0;

and
R1i (r

�
j ) = fri 2 Ri j �j(r�j )(C�j � frig �R�ij) > 0:

Take some arbitrary ti 2 T 1i (t�j ): Then, bj(t�j )(C�j�ftig�T�ij) > 0: Hence, there must be some
t�ij 2 T�ij such that bj(t�j )(C�j � f(ti; t�ij)g) > 0: Let t�j := (ti; t�ij): Hence, bj(t�j )(C�j �
ft�jg) > 0: Now, choose n as in (10). Then,

hn+1j (t�j )(C�j � fhn�j(t�j)g) = bj(t
�
j )(C�j � T�j [hn�j(t�j)])

� bj(t
�
j )(C�j � ft�jg) > 0;

where the �rst inequality follows from the fact that t�j 2 T�j [hn�j(t�j)]: As hj(t�j ) = hj(r�j ); we
must have that

hn+1j (t�j )(C�j � fhn�j(t�j)g) = hn+1j (r�j )(C�j � fhn�j(t�j)g);

and hence hn+1j (r�j )(C�j � fhn�j(t�j)g) > 0: Therefore,

hn+1j (r�j )(C�j � fhn�j(t�j)g) = �j(r
�
j )(C�j �R�j [hn�j(t�j)])

= �j(r
�
j )(C�j � fr�j 2 R�j j hn�j(r�j) = hn�j(t�j)g) > 0:

Hence, there must be some r�j 2 R�j such that �j(r
�
j )(C�j � fr�jg) > 0 and hn�j(r�j) =

hn�j(t�j): Let r�j = (ri; r�ij): As �j(r
�
j )(C�j�fr�jg) > 0; it follows that ri 2 R1i (r�j ): Moreover,

as hn�j(r�j) = hn�j(t�j); it follows that h
n
i (ri) = hni (ti): By (10) it then follows that hi(ti) =

hi(ri): So, we see that for every ti 2 T 1i (t�j ) there is some ri 2 R1i (r�j ) with hi(ti) = hi(ri): This
completes the induction start, with m = 1:

Take now some m � 2 and suppose, by the induction assumption, that for every player i;
and every ti 2 Tm�1i (t�j ); there is some ri 2 Rm�1i (r�j ) with hi(ti) = hi(ri): We prove that for
every player i; and every ti 2 Tmi (t�j ); there is some ri 2 Rmi (r�j ) with hi(ti) = hi(ri):

Choose some ti 2 Tmi (t�j ): Then, either ti 2 Tm�1i (t�j ); or there is some player k 6= i and some
tk 2 Tm�1k (t�j ) with bk(tk)(C�k � ftig � T�ik) > 0:

Consider �rst the case where ti 2 Tm�1i (t�j ): Then, by the induction assumption, there is
some ri 2 Rm�1i (r�j ) with hi(ti) = hi(ri): As R

m�1
i (r�j ) � Rmi (r�j ); it follows that there is some

ri 2 Rmi (r�j ) with hi(ti) = hi(ri); which was to show.
Consider next the case where there is some player k 6= i and some tk 2 Tm�1k (t�j ) with

bk(tk)(C�k � ftig � T�ik) > 0: By our induction assumption, we know that there is some
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rk 2 Rm�1k (r�j ) with hk(tk) = hk(rk): Moreover, as bk(tk)(C�k � ftig � T�ik) > 0; there is some
t�ik 2 T�ik such that bk(tk)(C�k � f(ti; t�ik)g) > 0: Let t�k := (ti; t�ik): Then, bk(tk)(C�k �
ft�kg) > 0: Choose n as in (10). Then,

hn+1k (tk)(C�k � fhn�k(t�k)g) = bk(tk)(C�k � T�k[hn�k(t�k)])
� bk(tk)(C�k � ft�kg) > 0;

where the �rst inequality follows from the fact that t�k 2 T�k[hn�k(t�k)]: As hk(tk) = hk(rk);
we must have that

hn+1k (tk)(C�k � fhn�k(t�k)g) = hn+1k (rk)(C�k � fhn�k(t�k)g);

and hence hn+1k (rk)(C�k � fhn�k(t�k)g) > 0: Therefore,

hn+1k (rk)(C�k � fhn�k(t�k)g) = �k(rk)(C�k �R�k[hn�k(t�k)])
= �k(rk)(C�k � fr�k 2 R�k j hn�k(r�k) = hn�k(t�k)g) > 0:

Hence, there must be some r�k 2 R�k such that �k(rk)(C�k � fr�kg) > 0 and hn�k(r�k) =
hn�k(t�k): Let r�k = (ri; r�ik): As �k(rk)(C�k � fr�kg) > 0; it follows that ri 2 R1i (rk): Since
rk 2 Rm�1k (r�j ); we conclude that ri 2 Rmi (r�j ):Moreover, as hn�k(r�k) = hn�k(t�k); it follows that
hni (ri) = hni (ti): By (10) it then follows that hi(ti) = hi(ri): Remember that ri 2 Rmi (r�j ): So,
we see that for every ti 2 Tmi (t�j ) there is some ri 2 Rmi (r�j ) with hi(ti) = hi(ri): This completes
the induction step.

By induction on m; we can thus conclude that for every ti 2 T �i (t�j ) there is some ri 2 R�i (r�j )
with hi(ti) = hi(ri): This completes the proof. �

Proof of Lemma 6. We de�ne

[T ��i(t
�
j )]f�i := f[t�i]f�i j t�i 2 T ��i(t�j )g

as the set of equivalence classes in T ��i(t
�
j ) induced by f�i: Then, for every ti 2 T �i (t�j ) and every

ri 2 fi(ti); we have that

1 = bi(ti)(C�i � T�i)
= bi(ti)(C�i � T ��i(t�j ))

=
X

[t�i]f�i2[T
�
�i(t

�
j )]f�i

bi(ti)(C�i � [t�i]f�i)

=
X

[t�i]f�i2[T
�
�i(t

�
j )]f�i

�i(ri)(C�i � f�i(t�i)):
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Here, the second equality follows from the fact that bi(ti) only assigns positive probability to
opponents� type combinations in T ��i(t

�
j ); as ti 2 T �i (t�j ): The third equality follows from the

observation that T ��i(t
�
j ) is the disjoint union of the sets [t�i]f�i ; where [t�i]f�i 2 [T ��i(t�j )]: The

fourth equality, �nally, follows from condition (1).
The equations above imply thatX

[t�i]f�i2[T
�
�i(t

�
j )]f�i

�i(ri)(C�i � f�i(t�i)) = 1;

from which it follows that �i(ri) only assigns positive probability to opponents�type combina-
tions that are in f�i(t�i) for some t�i 2 T ��i(t�j ): �
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