Assumption of Rationality

Lexicographic Beliefs Part III: Assumption of Rationality

Christian W. Bach

EPICENTER & University of Liverpool

Introduction

- Two ways of cautious reasoning have been presented so far:
 - Common Primary Belief in (Caution & Rationality)
 - Common Full Belief in (Caution & Respect of Preferences)

- Respect of preferences imposes restrictions not only on the primary but also on deeper lexicographic levels!
- However, there are other reasonable conditions that could be put on the various lexicographic levels.

Agenda

Assumption of Rationality

Assumption of Rationality

Common Assumption of Rationality

Algorithm

Existence

Agenda

Assumption of Rationality

Assumption of Rationality

Common Assumption of Rationality

Algorithm

Existence

Story

- You would like to go to a pub to read your book.
- Barbara is going to a pub as well, but you forgot to ask her to which one.
- The only objective for *you* is to avoid Barbara, since you would like to read your book in silence.
- Barbara prefers Pub A to Pub B, and Pub B to Pub C.
- Besides, *Barbara* suspects you to have an affair and would thus like to spy on you.
- Spying is only possible from Pub A to Pub C, or vice versa.
- Barbara derives additional utility of 3 from spying.
- Question: Which pub should you go to?

Assumption of Rationality

Barbara

		A_B	B_B	C_B
	A_{y}	0,3	1,2	1,4
You	\boldsymbol{B}_{y}	1,3	0, 2	1, 1
	C_{y}	1,6	1,2	0, 1

Assumption of Rationality

			Barbara	
		A_B	B_B	C_B
	A_{y}	0, 3	1, 2	1, 4
You	B_{y}	1, 3	0, 2	1, 1
	C_{y}	1,6	1, 2	0, 1

Algorithm

Under common full belief in (caution & respect of preferences), you go to Pub C:

- As Barbara prefers A_R to B_R and you respect her preferences, you must deem her choice A_R infinitely more likely than B_R .
- Then, you prefer B_v to A_v.
- Hence, you believe that Barbara deems your choice B_{ν} infinitely more likely than A_{ν} .
- Consequently, you believe that Barbara prefers B_R to C_R , and you must deem B_R infinitely more likely than C_R .
- But then the unique optimal choice for you is C_{v} .
- However, this is not the only plausible way to reason about Barbara!

			Barbara	
		A_B	B_{R}	C_B
	A_{v}	0, 3	1, 2	1, 4
You	$\vec{B_y}$	1, 3	0, 2	1, 1
	C_{v}	1,6	1, 2	0, 1

An alternative way of reasoning:

- For Barbara, both A_B and C_B can be optimal for some cautious lexicographic belief, but B_B can never be optimal.
- Therefore, you deem Barbara's choice A_B and C_B infinitely more likely than B_B .
- But then, your unique optimal choice is B_v!

The Underlying Intuition

- If player j's choice c_i is optimal for some cautious lexicographic belief, while his choice c'_i is not optimal for any cautious lexicographic belief, then player i must deem c_i infinitely more likely than c_i' .
- Player i is then said to assume rationality.
- In other words, player i deems his opponent i's good choices infinitely more likely than i's bad choices.

How Can this Intuition Be Formalized?

- How can the idea of assuming rationality be formalized in an epistemic model?
- **Attempt:** Type t_i must deem all choice-type pairs (c_i, t_i) , where c_i is optimal for t_i and t_i is cautious, infinitely more likely than all choice-type pairs (c'_i, t'_i) that do not have this property.

The Attempt Does Not Work!

- Attempt: Type t_i must deem all choice-type pairs (c_j, t_j), where c_j is optimal for t_j and t_j is cautious, infinitely more likely than all choice-type pairs (c'_i, t'_i) that do not have this property.
- Consider the following lexicographic epistemic model:

Types:
$$T_{you} = \{t_y\}$$
 and $T_{Barbara} = \{t_B\}$
Beliefs: $b_v(t_v) = ((A_B, t_B); (B_B, t_B); (C_B, t_B))$ and $b_B(t_B) = ((C_v, t_v); (B_v, t_v); (A_v, t_v))$

- \blacksquare Your type t_y satisfies the condition, but does not assume rationality in the intended way.
- Problem: Choice C_B can be optimal for Barbara for some cautious type, but your type t_y does not deem possible any type for Barbara for which C_B is indeed optimal.
- Remedy: it is additionally required that you must deem possible a cautious type for Barbara for which C_B is optimal!

More Types Are Needed

Types:
$$T_{you} = \{t_y\}$$
 and $T_{Barbara} = \{t_B, t_B'\}$
Beliefs: $b_y(t_y) = ((A_B, t_B); (C_B, t_B'); (C_B, t_B); (B_B, t_B); (A_B, t_B'); (B_B, t_B')),$
 $b_B(t_B) = ((B_y, t_y); (C_y, t_y); (A_y, t_y)),$ and $b_B(t_B') = ((A_y, t_y); (B_y, t_y); (C_y, t_y))$

- For Barbara choices A_R and C_R can be optimal for some cautious type.
- Your type t_y deems possible the cautious type t_B for which A_B is optimal as well as the cautious type t'_B for which C_B is optimal.
- Your type t_y deems all choice-type pairs where the type is cautious and the choice is optimal for the type infinitely more likely than all choice-type pairs that do not have this property.
- Indeed, type t_v assumes rationality in the intended way!

Assumption of Rationality

Definition

Assumption of Rationality

A cautious type t_i assumes rationality, whenever

- for every choice c_j that is optimal for some cautious type, t_i deems possible a cautious type t_i for which c_i is indeed optimal,
- t_i deems all choice-type pairs (c_j, t_j) , where t_j is cautious and c_j optimal for t_j , infinitely more likely than all choice-type pairs not satisfying this property.

Intuition:

A player deems good choices infinitely more likely than bad choices.

Remark:

Assumption of rationality is only "really meaningful" if defined for cautious types.

Assumption and Primary Belief in Rationality

Observation. If *Alice* is cautious and assumes *Bob*'s rationality, then she also primarily believes in *Bob*'s rationality.

- Suppose that t_{Alice} is cautious and assumes Bob's rationality.
- Then, t_{Alice} considers all choice-type pairs where the choice is optimal for the type infinitely more likely than other choice-type pairs.
- In particular, the support of t_{Alice} 's primary belief can then only contain choice-type pairs such that the choice is optimal for the type.

Assumption and Respect of Preferences

Observation. There is no general relationship between assuming rationality and respecting preferences.

			Barbara		
		A_B	B_B	C_B	
	A_{y}	0, 3	1, 2	1, 4	
You	B_{y}	1, 3	0, 2	1, 1	
	C_y	1,6	1, 2	0, 1	

Consider the following lexicographic epistemic model:

Types:
$$T_{you} = \{t_y\}$$
 and $T_{Barbara} = \{t_B\}$
Beliefs: $b_y(t_y) = ((A_B, t_B); (B_B, t_B); (C_B, t_B))$ and $b_B(t_B) = ((B_y, t_y); (C_y, t_y); (A_y, t_y))$

• Your type t_y respects Barbara's preferences, but does not assume her rationality.

$$\begin{split} & \text{Types: } T_{you} = \{t_y\} \text{ and } T_{Barbara} = \{t_B, t_B'\} \\ & \text{Beliefs: } b_y(t_y) = ((A_B, t_B); (C_B, t_B'); (C_B, t_B); (B_B, t_B); (A_B, t_B'); (B_B, t_B'); (B$$

- Your type t_y assumes Barbara's rationality, but does not respect her preferences.
- Indeed, for t_B choice B_B is better than C_B , yet t_y deems (C_B, t_B) infinitely more likely than (B_B, t_B) .

Remark

It is always possible to satisfy respect of preferences and assumption of rationality

■ Intuition: A type's lexicographic belief deems optimal choices infinitely more likely than the non-optimal choices, yet orders the non-optimal choices as required by respect of preference.

Agenda

Assumption of Rationality

■ Common Assumption of Rationality

Algorithm

Existence

Assuming (Rationality & Assumption of Rationality)

Definition

A cautious type t_i assumes (rationality & assumption of rationality), whenever

- for every choice c_j that is optimal for some cautious type that assumes i's rationality, type t_i deems possible a cautious type t_j that assumes i's rationality and for which c_i is indeed optimal;
- type t_i deems all choice-type pairs (c_j, t_j) , where t_j is cautious, assumes i's rationality, and c_j is optimal for t_j , infinitely more likely than all choice-type pairs not satisfying this property.

Common Assumption of Rationality

Definition

Assumption of Rationality

- A cautious type t_i expresses 1-fold assumption of rationality, whenever t_i assumes rationality.
- For all k > 2, a cautious type t_i expresses k-fold assumption of rationality, whenever
 - for every choice c_i that is optimal for some cautious type that expresses up to (k-1)-fold assumption of rationality, type t_i deems possible a cautious type t_i that expresses up to (k-1)-fold assumption of rationality and for which c_i is indeed optimal;
 - type t_i deems all choice-type pairs (c_i, t_i) where t_i is cautious, expresses up to (k-1)-fold assumption of rationality, and c_i is optimal for t_i , infinitely more likely than all choice-type pairs not satisfying this property.
- A cautious type t_i expresses common assumption of rationality, whenever t_i expresses k-fold assumption of rationality for all k > 1.

Story

Assumption of Rationality

- You would like to go to a pub to read your book.
- Barbara is going to a pub as well, but you forgot to ask her to which one.
- The only objective for *you* is to avoid Barbara, since you would like to read your book in silence.
- Barbara prefers Pub A to Pub B, and Pub B to Pub C.
- Besides, *Barbara* suspects you to have an affair and would thus like to spy on you.
- Spying is only possible from Pub A to Pub C, or vice versa.
- Barbara derives additional utility of 3 from spying.
- Question: Which pub should you go to?

Assumption of Rationality

Barbara

 $A_R B_R C_R$ $A_y \mid 0,3 \mid 1,2 \mid 1,4$ You $B_y \mid 1,3 \mid 0,2 \mid 1,1$ 1,6 1,2 0,1

Assumption of Rationality

			Barbara	
		A_B	B_B	C_B
	A_y	0, 3	1, 2	1, 4
You	$\vec{B_y}$	1, 3	0, 2	1, 1
	C_{y}	1,6	1, 2	0, 1

Algorithm

Types:
$$T_{you} = \{t_y\}$$
 and $T_{Barbara} = \{t_B, t_B'\}$
Beliefs: $b_y(t_y) = ((A_B, t_B); (C_B, t_B'); (C_B, t_B); (B_B, t_B); (A_B, t_B'); (B_B, t_B'),$
 $b_B(t_B) = ((B_y, t_y); (C_y, t_y); (A_y, t_y)),$ and $b_B(t_B') = ((A_y, t_y); (B_y, t_y); (C_y, t_y))$

- Your type t_v assumes Barbara's rationality.
- Barbara's type t_R does not assume your rationality: although your choices A_v and C_v are optimal for some cautious belief, t_R does not deem possible types for you for which A_v and C_v are optimal. (analogous for type t_P')
- Thus, type t_{y} only deems possible types for Barbara that do not assume rationality.
- However, Barbara's choice A_R is optimal for some type that is cautious and assumes your rationality.

Assumption of Rationality

			Barbara		
		A_B	B_B	C_B	
	A_{y}	0, 3	1, 2	1, 4	
You	B_{v}	1, 3	0, 2	1, 1	
	C_{y}	1,6	1, 2	0, 1	

Types:
$$T_{you} = \{ f_y^A, t_y^B, t_y^C \}$$
 and $T_{Barbara} = \{ t_B^A, t_B^C \}$ Beliefs for you: $b_y(t_y^A) = ((C_B, t_B^C); (B_B, t_B^C); (A_B, t_B^A); \ldots), b_y(t_y^B) = ((A_B, t_B^A); (C_B, t_B^C); (B_B, t_B^A); \ldots),$ and $b_y(t_y^C) = ((A_B, t_B^A); (B_B, t_B^A); (C_B, t_B^C); \ldots)$ Beliefs for Barbara: $b_B(t_B^A) = ((B_y, t_y^R); (C_y, t_y^C); (A_y, t_y^A); \ldots)$ and

Beliefs for Barbara:
$$b_B(t_B^*) = ((B_y, t_y^{\nu}); (C_y, t_y^{\nu}); (A_y, t_y^{\nu}); \ldots)$$
 and $b_B(t_B^{\nu}) = ((A_y, t_y^{\nu}); (B_y, t_y^{\nu}); (C_y, t_y^{\nu}); \ldots)$

- lacktriangle Type r_B^A does assume your rationality, and Barbara's choice A_B is optimal for r_R^A .
- Thus, Barbara's choice A_B is optimal for some cautious type that assumes your rationality.
- Note that type t^C_B also assumes your rationality.
- Observe that your type t_v^B assumes Barbara's rationality, but your types t_v^A and t_v^C do not assume her rationality.

Assumption of Rationality

		Barbara		
		A_B	B_B	C_B
	A_y	0, 3	1, 2	1, 4
You	B_{y}	1,3	0, 2	1, 1
	C_{y}	1,6	1, 2	0, 1

Indeed, consider the following lexicographic epistemic model:

Types:
$$T_{you} = \{f_y^A, f_y^B, t_y^C\}$$
 and $T_{Barbara} = \{f_B^A, f_B^C\}$
Beliefs for you: $b_y(r_y^A) = ((C_B, t_B^C); (B_B, t_B^C); (A_B, r_B^A); \ldots), b_y(t_y^B) = ((A_B, r_B^A); (C_B, t_B^C); (B_B, r_B^A); \ldots),$ and $b_y(t_y^C) = ((A_B, t_B^A); (B_B, t_B^A); (C_B, t_B^C); \ldots)$
Beliefs for Barbara: $b_B(f_B^A) = ((B_y, t_y^B); (C_y, t_y^C); (A_y, t_y^A); \ldots)$ and

- It is now shown that type t_y^B expresses common assumption of rationality.
- Type t_v expresses 1-fold assumption of rationality:

 $b_B(t_B^C) = ((A_V, t_V^A); (B_V, t_V^B); (C_V, t_V^C); \ldots)$

- Only Barbara's choices A_B and C_B can be optimal for a cautious belief: type t_v^B deems possible cautious types t_B^A and t_B^C for which A_B and C_B , respectively, are optimal.
- Type t_v^B deems (A_B, t_R^A) and (C_B, t_R^C) infinitely more likely than the rest.
- Note that only choice B_{ν} can be optimal for you, if you express 1-fold assumption of rationality.

Assumption of Rationality

Barbara

Types:
$$T_{you} = \{t_y^A, t_y^B, t_y^C\}$$
 and $T_{Barbara} = \{t_B^A, t_B^C\}$

Beliefs for you:
$$b_y(t_y^A) = ((C_B, t_B^C); (B_B, t_B^C); (A_B, t_B^A); \ldots), b_y(t_y^B) = ((A_B, t_B^A); (C_B, t_B^C); (B_B, t_B^A); \ldots),$$
 and $b_y(t_y^C) = ((A_B, t_B^A); (B_B, t_B^A); (C_B, t_B^C); \ldots)$

Beliefs for Barbara:
$$b_B(f_B^A) = ((B_y, t_y^B); (C_y, t_y^C); (A_y, t_y^A); \ldots)$$
 and $b_B(t_B^C) = ((A_y, t_y^A); (B_y, t_y^B); (C_y, t_y^C); \ldots)$

- Type t_v^B expresses 2-fold assumption of rationality:
 - Barbara's types t_R^A and t_R^C express 1-fold assumption of rationality
 - Thus, Barbara's choices A_R and C_R are optimal for cautious types that express 1-fold assumption of rationality.
 - Type t_v^B deems possible these types t_R^A and t_R^C .
 - Type t_{v}^{B} deems (A_{B}, t_{R}^{A}) and (C_{B}, t_{R}^{C}) infinitely more likely than the rest.

Assumption of Rationality

		Barbara		
		A_B	B_B	C_B
	A_{y}	0, 3	1, 2	1, 4
You	B_{y}	1, 3	0, 2	1, 1
	C_{y}	1,6	1, 2	0, 1

$$\begin{split} & \text{Types: } T_{you} = \{t_y^A, t_y^B, t_y^C\} \text{ and } T_{Barbara} = \{t_B^A, t_B^C\} \\ & \text{Beliefs for you: } b_y(t_y^A) = ((C_B, t_B^C); (B_B, t_B^C); (A_B, t_B^A); \ldots), b_y(t_y^B) = ((A_B, t_B^A); (C_B, t_B^C); (B_B, t_B^A); \ldots), \\ & \text{and } b_y(t_y^C) = ((A_B, t_B^A); (B_B, t_B^A); (C_B, t_B^C); \ldots) \end{split}$$

Beliefs for Barbara:
$$b_B(f_B^A) = ((B_y, f_y^B); (C_y, f_y^C); (A_y, f_y^A); \ldots)$$
 and $b_B(f_B^C) = ((A_y, f_y^A); (B_y, f_y^B); (C_y, f_y^C); \ldots)$

- Note that in order to express 2-fold assumption of rationality Barbara must deem your choice B_{ν} infinitely more likely than your other choices.
- Barbara's type t_R^A expresses 2-fold assumption of rationality:
 - Only your choice B_{y} is optimal for a cautious type that expresses 1-fold assumption of rationality.
 - Type t_R^A deems possible your type t_v^B that is cautious, expresses 1-fold assumption of rationality, and for which your choice B_{ν} is optimal.
 - Type t_R^A deems (B_y, t_y^B) infinitely more likely than the rest.

			Barbara		
		A_B	B_B	C_B	
	A_{y}	0, 3	1, 2	1, 4	
You	B_{y}	1,3	0, 2	1, 1	
	C_{y}	1,6	1, 2	0, 1	

Types:
$$T_{you} = \{t_y^A, t_y^B, t_y^C\}$$
 and $T_{Barbara} = \{t_B^A, t_B^A\}$
Beliefs for you: $b_y(t_y^A) = ((C_B, t_B^C); (B_B, t_B^A); (A_B, t_B^A); \ldots), b_y(t_y^B) = ((A_B, t_B^A); (C_B, t_B^C); (B_B, t_B^A); \ldots),$ and $b_y(t_y^C) = ((A_B, t_B^A); (B_B, t_B^A); (C_B, t_B^C); \ldots)$
Beliefs for Barbara: $b_B(t_B^A) = ((B_y, t_y^B); (C_y, t_y^C); (A_y, t_y^A); \ldots)$ and $b_B(t_B^C) = ((A_y, t_y^A); (B_y, t_y^A); (C_y, t_y^C); \ldots)$

- Type t_v^B expresses 3-fold assumption of rationality:
 - Barbara can only rationally make choice A_B under up to 2-fold assumption of rationality.
 - Type t_y^B deems possible Barbara's type t_B^A that is cautious, expresses up to 2-fold assumption of rationality, and for which A_B is optimal.
 - Type t_v^B deems (A_B, t_R^A) infinitely more likely than the rest.
- By continuing in this fashion, it can be concluded that your type t_p^B expresses k-fold assumption of rationality for every $k \ge 1$: hence, t_p^B entertains common assumption of rationality.
- Consequently, you can rationally and cautiously only go to Pub B.

Agenda

Assumption of Rationality

Common Assumption of Rationality

Algorithm

Existence

Assumption of Rationality

Definition

A cautious type t_i assumes rationality, whenever

- \blacksquare for every choice c_i that is optimal for some cautious type, t_i deems possible a cautious type t_i for which c_i is indeed optimal,
- \blacksquare t_i deems all choice-type pairs (c_i, t_i) , where t_i is cautious and c_i optimal for t_i , infinitely more likely than all choice-type pairs not satisfying this property.

Common Assumption of Rationality

Definition

- A cautious type t_i expresses 1-fold assumption of rationality, whenever t_i assumes rationality.
- For all k > 2, a cautious type t_i expresses k-fold assumption of rationality, whenever
 - for every choice c_j that is optimal for some cautious type that expresses up to (k-1)-fold assumption of rationality, type t_i deems possible a cautious type t_j that expresses up to (k-1)-fold assumption of rationality and for which c_j is indeed optimal;
 - type t_i deems all choice-type pairs (c_j, t_j) where t_j is cautious, expresses up to (k-1)-fold assumption of rationality, and c_j is optimal for t_j , infinitely more likely than all choice-type pairs not satisfying this property.
- A cautious type t_i expresses common assumption of rationality, whenever t_i expresses k-fold assumption of rationality for all k > 1.

Towards an Algorithm

Assumption of Rationality

Step 1. 1-fold assumption of rationality: What choices can i (cautiously) rationally make when assuming rationality?

- First, note that i does not choose by Lexicographic Pearce's Lemma a weakly dominated choice.
- If i assumes j's rationality, then i deems all choices that are optimal for some cautious belief infinitely more likely than all choices that are not optimal for any cautious belief.
- Again by Lexicographic Pearce's Lemma optimal choices under caution are equivalent to non-weakly-dominated choices.
- Hence, if i assumes j's rationality, then i deems all non-weakly-dominated choices of j infinitely more likely than all weakly dominated choices of j.
- Let C_j^1 be the set of non-weakly-dominated choices for j: Then, i deems all choices inside C_j^1 infinitely more likely than all choices outside C_j^1 .
- Let $b_i^{lex} = (b_i^1; b_i^2; \dots; b_i^K)$ be i's lexicographic belief about j's choices.
- Then, there exists some level L < K such that
 - 1 the level beliefs b_i^1, \ldots, b_i^L only assign positive probability to choices inside C_j^1 .
 - every choice $c_i^1 \in C_i^1$ receives positive probability at some level $l \in \{1, ..., L\}$.
- Consequently, $(b_i^1; \ldots; b_i^L)$ forms a cautious lexicographic belief on C_i^1 .
- Moreover, every choice c_i ∈ C_i which is optimal under b_i^{lex} on C_j must also be optimal under the truncated cautious belief (b_i¹; . . . ; b_i^L) on C_i¹.
- lacksquare Thus, by Lexicographic Pearce's Lemma applied to C_j^1 the choice c_i must not be weakly dominated on C_j^1 .

Towards an Algorithm

Conclusion: If *i* is cautious and assumes *j*'s rationality, then every optimal choice c_i

- must not be weakly dominated in the original game
- must not be weakly dominated in the reduced game, obtained after 1 round of weak dominance

i.e. every optimal choice c_i survives 2 rounds of weak dominance:

$$c_i \in C_i^2$$
.

Towards an Algorithm

Step 2. up to 2-fold assumption of rationality: What choices can *i* (cautiously) rationally make under up to 2-fold assumption of rationality?

- If c_j is optimal for some cautious belief b_j^{lex} that assumes i's rationality, while c_j' is not, then i deems c_j infinitely more likely than c_i' .
- By **Step 1**, these choices of player j are all in C_i^2 .
- \blacksquare Then, i deems all choices inside C_j^2 infinitely more likely than all choices outside C_j^2
- By a similar "truncated lexicographic belief" argument as before, it can be concluded that every choice of player i must be optimal for a truncated belief on C²_i.
- Then, by Lexicographic Pearce's Lemma, every optimal choice for i must not be weakly dominated on c_j^2 .
- Therefore, every optimal choice for i must not be weakly dominated within the reduced game obtained after 2 rounds of weak dominance, i.e. must survive 3 rounds of weak dominance:

$$c_i \in C_i^3$$
.

Algorithm

Towards an Algorithm

In general: If *i* is cautious and expresses up to k-fold assumption of rationality, then every optimal choice for *i* must survive (k+1) rounds of weak dominance

Algorithm

Iterated Weak Dominance

- Step 1. Within the original game, eliminate all choices that are weakly dominated.
- Step 2. Within the reduced game obtained after step 1, eliminate all choices that are weakly dominated.
- etc, until no further choices can be eliminated.

Algorithmic Characterization

Theorem

For all $k \geq 1$, the choices that can rationally be made by a cautious type that expresses up to k-fold assumption of rationality are exactly those choices that survive the first k+1 rounds of Iterated Weak Dominance.

Corollary

The choices that can rationally be made by a cautious type that expresses common assumption of rationality are exactly those choices that survive Iterated Weak Dominance.

- Iterated Weak Dominance stops after finitely many rounds.
- Iterated Weak Dominance always yields a non-empty set of choices for both players.
- The order and speed of elimination crucially matter for the eventual output of the algorithm!

Story

- You would like to go to a pub to read your book.
- Barbara is going to a pub as well, but you forgot to ask her to which one.
- The only objective for *you* is to avoid Barbara, since you would like to read your book in silence.
- Barbara prefers Pub A to Pub B, and Pub B to Pub C.
- Besides, *Barbara* suspects you to have an affair and would thus like to spy on you.
- Spying is only possible from Pub A to Pub C, or vice versa.
- Barbara derives additional utility of 3 from spying.
- Question: Which pub should you go to?

Assumption of Rationality

Barbara

		A_B	B_B	C_B
	A_{y}	0,3	1,2	1,4
You	\boldsymbol{B}_{y}	1,3	0, 2	1, 1
	$C_{\rm y}$	1,6	1,2	0, 1

Assumption of Rationality

Barbara A_R B_R C_R 0, 3 1, 2 1,4 A_{ν} You 0, 2 1, 1 B_{ν} 1,3 C_{v} 1,6 1, 2 0, 1

First Order of Elimination

Step 1. Eliminate B_B

Assumption of Rationality

Barbara C_{R} A_B 0, 3 A_{v} 1,4 You 1,3 1, 1 B_{ν} C_{v} 1,6 0, 1

First Order of Elimination

Step 2. Only eliminate A_v

Assumption of Rationality

Barbara C_{R} A_B

1,3 1, 1 You 1,6 0, 1

First Order of Elimination

Step 3. Eliminate C_B

Assumption of Rationality

Barbara

 A_{R} 1,3 1,6

First Order of Elimination

 B_{y} and C_{y} survive for you!

Assumption of Rationality

		Barbara			
		A_B	B_B	C_B	
	A_y	0, 3	1, 2	1, 4	
You	B_y	1, 3	0, 2	1, 1	
	C_{v}	1,6	1, 2	0, 1	

Second Order of Elimination

Step 1. Eliminate B_B

Assumption of Rationality

Barbara C_{R} A_B A_{v} 0, 31,4 You 1,3 1, 1 B_{ν} C_{v} 1,6 0, 1

Second Order of Elimination

Step 2. Eliminate A_v and C_v

Assumption of Rationality

Second Order of Elimination

Step 3. Eliminate C_B

Assumption of Rationality

Second Order of Elimination

Only B_{y} survives for you!

Assumption of Rationality

Cautious Reasoning

Algorithm

Existence

Existence

- There is no easy iterative procedure delivering a type that expresses common assumption of rationality.
- Since the non-emptyness of the algorithm ensures the existence of a choice surviving it which in turn can be made under common assumption of rationality by the preceding theorem, it is always possible to construct an epistemic model containing a type that expresses common assumption of rationality!

Theorem

Let Γ be some finite two player game. Then, there exists a lexicographic epistemic model which contains a type t_i that expresses common assumption of rationality.

Story

- Barbara and you are the only ones to take an exam.
- Both must choose a seat.
- If both choose the same seat, then with probability 0.5 you get the seat you want, and with probability 0.5 you get the one horizontally next to it.
- In order to pass the exam *you* must be able copy from *Barbara*, and the same applies to her.
- A person can only copy from the other person if seated horizontally next or diagonally behind the latter.

Algorithm

Story (continued)

The probabilities of successful copying for the respective seats are given in percentages:

$$a = 0, b = 10, c = d = 20, e = f = 45, g = h = 95$$

- The objective is to maximize the expected percentage of successful copying.
- Question: What seats can you rationally and cautiously choose under common assumption of rationality?

Algorithm

Barbara b_B h_B a_B c_B d_B e_B f_B g_B 5, 5 0, 10 0.00, 20 0.0 0, 0 0.0 0.0 a_{Y} b_{Y} 10,0 5, 5 0, 20 0, 00, 00,0 0,0 0, 00, 020, 0 20, 20 20, 20 0, 00,45 0, 00.0 CY20,0 0, 020, 20 20, 20 0, 45 0,0 0,0 0, 0 d_{Y} You 0, 00, 00, 045,0 45, 45 45, 45 0,0 0,95 e_Y 0, 00, 045,0 0, 045, 45 45, 45 0,95 0, 0 f_{Y} 0,0 0,0 95, 0 95, 95 95, 95 0, 00, 00, 0 g_Y h_Y 0.0 0, 00.00.0 95.0 0, 0 95, 95 95, 95

		Barbara Company Compan							
		a_B	b_B	c_B	d_B	e_B	f_B	g_B	h_B
a_1	Y	5, 5	<mark>0</mark> , 10	<mark>0</mark> , 0	0, 20	<mark>0</mark> , 0	<mark>0</mark> , 0	0, 0	0, 0
b_1	Y	10, 0	5, 5	0, 20	0, 0	0, 0	0, 0	0, 0	0, 0
c_1	Y	0, 0	20, 0	20, 20	20, 20	0, 0	0, 45	0, 0	0, 0
d ′ou	Y	20, 0	0, 0	20, 20	20, 20	0, 45	0, 0	0, 0	0, 0
e_1	Y	0, 0	<mark>0</mark> , 0	0, 0	45, 0	45, 45	45, 45	0, 0	0, 95
f_1	Y	0, 0	<mark>0</mark> , 0	45, 0	<mark>0</mark> , 0	45, 45	45, 45	0, 95	0, 0
81	Y	0, 0	<mark>0</mark> , 0	<mark>0</mark> , 0	<mark>0</mark> , 0	<mark>0</mark> , 0	95, 0	95, 95	95, 95
h_1	Y	0, 0	0, 0	0, 0	0, 0	95, 0	0, 0	95, 95	95, 95

Round 1.

- In the full game a_Y and b_Y are weakly dominated by $\frac{1}{2}c_Y + \frac{1}{2}d_Y$.
- Eliminate a_Y and b_Y , as well as a_B and b_B by symmetry.

		Barbara					
		c_B	d_B	e_B	f_B	g_B	h_B
	c_Y	20, 20	20, 20	0, 0	<mark>0</mark> , 45	0, 0	0, 0
You	d_Y	20, 20	20, 20	0, 45	0, 0	0, 0	0, 0
	e_Y	0, 0	45, 0	45, 45	45, 45	0, 0	0, 95
	f_Y	45, 0	0, 0	45, 45	45, 45	0, 95	0, 0
	g_Y	0, 0	0, 0	0, 0	95, 0	95, 95	95, 95
	h_Y	0, 0	0, 0	95, 0	0, 0	95, 95	95, 95

Algorithm

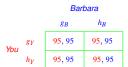
Round 2.

- In the reduced game c_Y and d_Y are weakly dominated by $\frac{1}{2}e_Y + \frac{1}{2}f_Y$.
- Eliminate c_Y and d_Y , as well as c_B and d_B by symmetry.

		Barbara				
		e_B	f_B	g_B	h_B	
You	e_Y	45, 45	45, 45	<mark>0</mark> , 0	<mark>0</mark> , 95	
	f_Y	45, 45	45, 45	0, 95	0, 0	
	g_Y	0, 0	95, 0	95, 95	95, 95	
	h_Y	95, 0	0, 0	95, 95	95, 95	

Round 3.

- In the reduced game e_Y and f_Y are weakly dominated by $\frac{1}{2}g_Y + \frac{1}{2}h_Y$.
- Eliminate e_Y and f_Y , as well as e_B and f_B by symmetry.



Round 4.

- No more choices can be eliminated.
- You can rationally and cautiously choose seats g and h under common assumption of rationality.

Algorithm

Intuition: Why does common assumption of rationality lead to a different conclusion as common full belief in (caution & respect of preferences)?

First step of reasoning

- Not that both choices a and b are irrational, yet b is better than a.
- Under common assumption of rationality it is thus not distinguished between a and b, however under common full belief in (caution & respect of preferences) it is.

Second step of reasoning

- If you believe Barbara to reason in line with the first step, then c and d can no longer be optimal, yet c is better than d.
- Under common assumption of rationality it is not distinguished between c and d, however under common full belief in (caution & respect of preferences) it is.

Third step of reasoning

- If you believe Barbara to reason in line with the first and the second step, then *e* and *f* can no longer be optimal, yet *f* is better than *e*.
- Under common assumption of rationality it is not distinguished between e and f, however under common full belief in (caution & respect of preferences) it is.

Fourth step of reasoning

- If you believe Barbara to reason in line with the first, the second and the fourth step, then g and h can no longer be optimal, yet g is better than h.
- Under common assumption of rationality g and h are both optimal, while under common full belief in (caution & respect of preferences) only g remains optimal.

There Exists No Related Equilibrium Notion

- The correct beliefs assumption implicit in any equilibrium notion seems to be at odds with common assumption of rationality.
- As illustration consider the lexicographic epistemic model of the Spy Game again.

		Barbara			
		A_B	B_B	C_B	
	A_y	0, 3	1, 2	1,4	
You	B_{y}	1, 3	0, 2	1, 1	
	C_{y}	1,6	1, 2	0, 1	

- Types: $T_{you} = \{t_y^A, t_y^B, t_y^C\}$ and $T_{Barbara} = \{t_B^A, t_B^A\}$ Beliefs for you: $b_y(t_y^A) = ((C_B, t_B^C); (B_B, t_B^C); (A_B, t_B^A); \ldots), b_y(t_y^B) = ((A_B, t_B^A); (C_B, t_B^C); (B_B, t_B^A); \ldots),$ and $b_y(t_y^C) = ((A_B, t_B^A); (B_B, t_B^A); (C_B, t_B^C); \ldots)$ Beliefs for Barbara: $b_B(t_B^A) = ((B_y, t_y^B); (C_y, t_y^C); (A_y, t_y^A); \ldots)$ and $b_B(t_B^C) = ((A_y, t_y^A); (B_y, t_y^B); (C_y, t_y^C); \ldots)$
- \blacksquare Recall that t_v^B express common assumption of rationality.
- However, t_v^B deems it possible that Barbara is **not (lexicographically) correct** about his type!
- Bach & Jagau (2022) generalize such insights to an incompatibility theorem about equilibrium and IWD:
 "compatibility implies one round of weak dominance only".

Existence